|
|
專家信息:
王海豐,漢族,1983年8月出生,博士,現(xiàn)任華東理工大學化學與分子工程學院教授,博士生導(dǎo)師。
主要從事計算化學和理論催化研究。研究以催化劑理性篩選和設(shè)計為目標,重點關(guān)注催化活性理論及新方法發(fā)展、金屬及氧化物材料催化新機理和構(gòu)效關(guān)系的建立,并聚焦光電轉(zhuǎn)換和水分解制氫等能源/環(huán)境體系催化材料的優(yōu)化調(diào)控和理論預(yù)測。發(fā)表SCI論文60余篇,其中以第一或通訊作者發(fā)表包括Nature Commun (4)、Angew Chem (3)、Adv Mater (1)、Nano Lett (1)、WIRES Comupt Mol Sci (1)、ACS Catal (8)等在內(nèi)的論文40余篇(影響因子>10論文18篇,封面論文5篇,3篇入選ESI高被引論文和1篇熱點論文),論文SCI他引1600余次,單篇最高他引180次。
教育及工作經(jīng)歷:
2001.09 - 2005.07 華東理工大學,應(yīng)用化學,本科。
2005.09 - 2012.02 華東理工大學,工業(yè)催化,碩博連讀。
2008.09 - 2010.09 英國貝爾法斯特女王大學,物理化學,國家公派聯(lián)合培養(yǎng)博士。
2010.10 - 2011.10 華東理工大學優(yōu)秀博士學位論文培育計劃。
2012/02 - 2017/08 華東理工大學,計算化學中心/工業(yè)催化研究所,副教授。
2017/09 - 至今華東理工大學,計算化學中心/工業(yè)催化研究所,教授,博士生導(dǎo)師。
學術(shù)兼職:
1、Chinese Chemical Letter青年編委。
2、Frontier in Carbon-based Materials評審編委等。
研究生招生信息:
博士/碩士招生專業(yè):工業(yè)催化.
歡迎對計算化學、能源和環(huán)境催化、AI程序設(shè)計等研究方向感興的研究生和博士后加入本課題組;同時歡迎數(shù)學、計算機等專業(yè)本科生來課題組交流學習。
研究方向:計算化學、理論催化。
研究領(lǐng)域:
主要從事理論多相催化和固體材料及表界面結(jié)構(gòu)的第一性原理計算模擬,研究集中在多相(光電)催化材料表/界面結(jié)構(gòu)特性、催化反應(yīng)解析、多相催化劑篩選及設(shè)計基礎(chǔ)等能源、環(huán)境催化相關(guān)領(lǐng)域。
具體方向包括:
1. 氣固、液固表界面幾何結(jié)構(gòu)及電子結(jié)構(gòu)模擬、催化反應(yīng)機理解析。
2. 催化活性評估模型及多相催化劑科學篩選/設(shè)計動力學基礎(chǔ)。
3. 太陽能電池、光解水制氫等相關(guān)新型光電材料性能模擬及設(shè)計。
科研項目:
1.主持了國家自然科學基金、國家重大科學研究計劃子課題、上海市自然科學基金等國家和省部級科研項目7項。主持了國家自然科學基金青年基金一項、中央高校基本科研業(yè)務(wù)費一項、上海市自然科學基金一項等;作為技術(shù)骨干參與了國家重大基礎(chǔ)科學研究項目和國家自然科學基金重點基金各一項等。
2.作為技術(shù)骨干參與了國家重大基礎(chǔ)科學研究項目和國家自然科學基金重點基金各一項等。
3.并于2012/2015年入選了華東理工大學首屆青年英才人才計劃/跟蹤計劃。
科研成果:
1.目前在Nature Commun. (4篇), Angew. Chem. Int. Ed. (3篇), Sci. Rep.(2篇), J. Catal., Small, Chem. Eur. J., J. Phys. Chem. C, J. Mater. Chem. A, Phys. Chem. Chem. Phys., J. Chem. Phys.等重要學術(shù)刊物發(fā)表SCI論文100余篇。
發(fā)明專利:
[1]陳建富, 董春光, 來壯壯, 王海豐, 胡培君. 一種固體材料表面重構(gòu)路徑的最優(yōu)原子匹配搜尋方法[P]. 上海市: CN117690530A, 2024-03-12.
[2]王海豐, 袁海洋, 樓振鑫, 楊化桂, 劉鵬飛, 李文婧, 陳成. 一種催化材料和反應(yīng)路徑自動化計算的方法[P]. 上海市: CN117275598A, 2023-12-22.
[3]王海豐, 陳建富, 來壯壯, 胡培君. 一種基于時間積分和牛頓法自動聯(lián)用高效求解穩(wěn)態(tài)微觀動力學方程組的方法[P]. 上海市: CN111488550B, 2023-06-16.
[4]王海豐, 周川, 陳建富, 胡培君. 一種基于基因算法的表面催化反應(yīng)中催化劑的設(shè)計方法[P]. 上海市: CN110942811B, 2023-05-02.
[5]王海豐, 陳建富, 來壯壯, 胡培君. 一種基于時間積分和牛頓法自動聯(lián)用高效求解穩(wěn)態(tài)微觀動力學方程組的方法[P]. 上海市: CN111488550A, 2020-08-04.
[6]周川, 陳建富, 王海豐, 胡培君. 一種基于基因算法的表面催化反應(yīng)中催化劑的設(shè)計方法[P]. 上海市: CN110942811A, 2020-03-31.
[7]龔學慶, 丁攀, 盧冠忠, 胡培君, 王海豐, 曹宵鳴, 郭楊龍, 郭耘, 王艷芹, 王筠松. 一種測量晶體表面結(jié)構(gòu)之間距離的方法[P]. 上海市: CN104915473B, 2019-04-30.
[8]龔學慶, 丁攀, 盧冠忠, 胡培君, 王海豐, 曹宵鳴, 郭楊龍, 郭耘, 王艷芹, 王筠松. 一種測量晶體表面結(jié)構(gòu)之間距離的方法[P]. 上海: CN104915473A, 2015-09-16.
出版專著:
[1] Computational Simulation of Trapped Charge Carriers in TiO2 and Their Impacts on Photocatalytic Water Splitting
Dong Wang; Fei Li; Jian-Fu Chen; Hai Feng Wang; Xiao Ming Cao; Peijun Hu; Xueqing Gong*
Computational Photocatalysis: Modeling of Photophysics and Photochemistry at Interfaces , ACS Symposium SeriesVol. 1331, 67-100, United States, 2019.
[2] Computational Simulation of Rare Earth Catalysis
Gong Xue-Qing; Yin Li-Li; Zhang Jie; Wang, Hai-Feng; Cao Xiao-Ming; Lu Guanzhong; Hu Peijun
Catalysis and Kinetics: Molecular Level Considerations , Guy B. Martin, Burlington: Academic Press , 1-60, 2014-01-13.
發(fā)表英文論文:
目前在國際國內(nèi)學術(shù)刊物上發(fā)表論文100余篇,目前以第一作者或通訊作者在Nature Commun. (2篇), Angew. Chem. Int. Ed. (3篇), Sci. Rep.(2篇), J. Catal., Small, Chem. Eur. J., J. Phys. Chem. C, J. Mater. Chem. A, Phys. Chem. Chem. Phys., J. Chem. Phys.等重要學術(shù)刊物發(fā)表SCI論文(IF>3)近20篇。
[1] Ren, Guanhua ; Zhou, Min ; Wang, Haifeng. Weakened Interfacial Hydrogen Bond Connectivity Drives Selective Photocatalytic Water Oxidation toward H2O2 at Water/Brookite-TiO2 Interface.Journal of the American Chemical Society.2024,146(9):6084-6093.DOI10.1021/jacs.3c13402
[2] Zhang, Jiaming ; Liu, Kaiwei); Zhang, Boyang ; Zhang, Jifang ; Liu, Meng ; Xu, Yao ; Shi, Ke ; Wang, Haifeng ; Zhang, Zihao ; Zhou, Peng ; Ma, Guijun .Anisotropic Charge Migration on Perovskite Oxysulfide for Boosting Photocatalytic Overall Water SplittingJournal of the American Chemical Society.2024,146(6):4068-4077.DOI10.1021/jacs.3c12417
[3] Lei, Panpan ; Chen, Bingran ; Zhang, Tonghui ;Chen, Qinlin; Xuan, Liangming ; Wang, Haifeng ; Yan, Qiongjiao ; Wang, Wei ; Zeng, Jie ; Chen, Fener. Visible-light-driven selective difluoroalkylation of α-CF3 alkenes to access CF2-containing gem-difluoroalkenes and trifluoromethylalkanes.Organic Chemistry Frontiers.2024 ,11(2):458-465.DOI10.1039/d3qo01551c
[4] Rahman, Abdur ; Marufuzzaman, Mohammad ; Street, Jason ; Wooten, James ; Gude, Veera Gnaneswar ; Buchanan, Randy); Wang, Haifeng.A comprehensive review on wood chip moisture content assessment and prediction.Renewable and Sustainable Energy Reviews.2024, 卷189子輯A,DOI10.1016/j.rser.2023.113843
[5] Chorney, Wesley ; Wang, Haifeng ; Fan, Lir-Wan.AttentionCovidNet: Efficient ECG-based diagnosis of COVID-19.Computers in Biology and Medicine. Chorney, 2024,卷168,DOI10.1016/j.compbiomed.2023.107743
[6] Dong, Chunguang ; Lai, Zhuangzhuang ; Wang, Haifeng. Design of MoS2 edge-anchored single-atom catalysts for propane dehydrogenation driven by DFT and microkinetic modeling.Physical Chemistry Chemical Physics.2024,26(6):5303-5310.DOI10.1039/d3cp05197h
[7] Wang, Haifeng ; Zhang, Yufeng ; Li, Chuanzhong.Multi-component super integrable Hamiltonian hierarchies.Physica D: Nonlinear Phenomena.2023.卷456.DOI10.1016/j.physd.2023.133918
[8] Mao, Fangxin ; Zhang, Junshan ; Wang, Hai Feng ; Liu, Peng Fei ; Yang, Hua Gui.Heterogeneous Fe-Doped Ni(OH)2 Grown on Nickel Mesh by Electrodeposition for Efficient Alkaline Oxygen Evolution Reaction.Chemistry - A European Journal. Mao, Fangxin ; Zhang, Junshan ; (...); Yang, Hua Gui 出版時間 Dec 2023,卷29期69,DOI10.1002/chem.202302055
[9] Wang, Haifeng ; Zhang, Yufeng ; Li, Chuanzhong.A multi-component super integrable Dirac hierarchy.Physics Letters B. 2023 ,卷847 .DOI10.1016/j.physletb.2023.138323
[10] Zhang, Xin Yu ; Lou, Zhen Xin ; Chen, Jiacheng ; Liu, Yuanwei; Wu, Xuefeng; Zhao, Jia Yue ; Yuan, Hai Yang ; Zhu, Minghui ; Dai, Sheng; Wang, Hai Feng ; Sun, Chenghua ; Liu, Peng Fei ; Yang, Hua Gui.Direct OC-CHO coupling towards highly C2+ products selective electroreduction over stable Cu0/Cu2+ interface.Nature Communications. 2023 |,卷14期1,DOI10.1038/s41467-023-43182-6
[11] Wang H.*; Hu P.; Lai Z.; Sun N.; Jin J.; Chen J.Resolving the Intricate Mechanism and Selectivity of Syngas Conversion on Reduced ZnCr2Ox: A Quantitative Study from DFT and Microkinetic Simulations.ACS Catalysis, 2021, 11(21): 12977-12988.
[12] Chen, Dingming; Lai, Zhuangzhuang; Zhang, Jiawei; Chen, J.ianfu; Hu, Peijun; Wang, Haifeng*.Gold Segregation Improves Electrocatalytic Activity of Icosahedron Au@Pt Nanocluster: Insights from Machine Learning(dagger).Chinese Journal of Chemistry, 2021, 39(11): 3029-3036.
[13] Zhou C.; Hu P.; Wang H.*.Resolving the Two-Track Scaling Trend for Adsorbates on Rutile-Type Metal Oxides: New Descriptors for Adsorption Energies.Journal of Physical Chemistry C, 2021, 125(42): 23162-23168.
[14] Liu, Yuanwei; Wang, Li Jie; Zhang, Hao; Yuan, Hai Yang; Zhang, Qinghua; Gu, Lin; Wang, Hai Feng; Hu, P.; Liu, Peng Fei*; Jiang, Zheng*; Yang, Hua Gui*.Boosting Photocatalytic Water Oxidation Over Bifunctional Rh-0-Rh3+ Sites.Angewandte Chemie International Edition, 2021, 60(42): 22761-22768.
[15] Chen, Manyu; Xia, Jie; Li, Huan; Zhao, Xiuge; Peng, Qingpo; Wang, Jiajia; Gong, Honghui; Dai, Sheng*; An, Pengfei*; Wang, Haifeng*; Hou, Zhenshan*.A Cationic Ru(II) Complex Intercalated into Zirconium Phosphate Layers Catalyzes Selective Hydrogenation via Heterolytic Hydrogen Activation.ChemCatChem, 2021, 13(17): 3801-3814.
[16] Zhou, Chuan; Zhao, Jia Yue; Liu, Peng Fei; Chen, Jianfu; Dai, Sheng; Yang, Hua Gui; Hu, P.; Wang, Haifeng*.Towards the object-oriented design of active hydrogen evolution catalysts on single-atom alloysChemical Science, 2021, 12(31): 10634-10642.
[17] Lu, Si-Min; Chen, Jian-Fu; Peng, Yue-Yi; Ma, Wei; Ma, Hui; Wang, Hai-Feng; Hu, Peijun; Long, Yi-Tao*.Understanding the Dynamic Potential Distribution at the Electrode Interface by Stochastic Collision Electrochemistry.Journal of the American Chemical Society, 2021, 143(32): 12428-12432.
[18] Chai G.; Pan S.; Guo Y.; Zhan W.; Wang L.; Guo Y.; Wang H.Insight into the Surface-Tuned Activity and Cl2/HCl Selectivity in the Catalytic Oxidation of Vinyl Chloride over Co3O4(110) versus (001): A DFT Study.Journal of Physical Chemistry C, 2021, 125(31): 16975-16983.
[19] Zhang Z.; Zhou M.; Chen Y.; Liu S.; Wang H.; Zhang J.; Ji S.; Wang D.; Li Y.Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction.Science China-Materials, 2021, 64(8): 1919-1929.
[20] Xu, Bei-Bei; Zhou, Min; Ye, Man; Yang, Ling-Yun; Wang, Hai-Feng*; Wang, Xue Lu*; Yao, Ye-Feng*.Cooperative Motion in Water-Methanol Clusters Controls the Reaction Rates of Heterogeneous Photocatalytic Reactions.Journal of the American Chemical Society, 2021, 143(29): 10940-10947.
[21] Yuan, Haiyang; Yang, Huagui; Hu, P.; Wang, Haifeng*.Origin of Water-Induced Deactivation of MnO2-Based Catalyst for Room-Temperature NO Oxidation: A First-Principles Microkinetic Study.ACS Catalysis, 2021, 11(12): 6835-6845.
[22] Zhang, Binghu; Chen, Jianfu; Wu, Guisheng; Guo, Yun; Wang, Haifeng*.Revealing the boosting role of NO for soot combustion over CeO2(111): A first-principles microkinetic modeling.Molecular Catalysis, 2021, 509: 111582.
[23] Peng, Chao; Chen, Jianfu; Hu, Peijun; Wang, Haifeng*.Molecular Adsorption Kinetics: Nonlinear Entropy-Enthalpy Loss Quantified by Constrained AIMD and Insights into the Adsorption-Site Determination on Metal Oxides.Journal of Physical Chemistry C, 2021, 125(20): 10974-10982.
[24] Yaxuan Jing; Yanqin Wang*; Shinya Furukawa; Jie Xia; Chengyang Sun; Max J. Hulsey; Haifeng Wang; Yong Guo; Xiaohui Liu; Ning Yan*.Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a Ru/Nb2O5Catalyst.Angewandte Chemie International Edition, 2021, 133(10): 5527-5535.
[25] Chen, Jianfu; Jia, Menglei; Hu, Peijun; Wang, Haifeng*.CATKINAS: A large-scale catalytic microkinetic analysis software for mechanism auto-analysis and catalyst screening.Journal of Computational Chemistry, 2021, 42(5): 379-391.
[26] Lin Dong; Jie Xia; Yong Guo*; Xiaohui Liu; Haifeng Wang*; Yanqin Wang.Mechanisms of C-aromatic-C bonds cleavage in lignin over NbOx-supported Ru catalyst.Journal of Catalysis, 2021, 394(/): 94-103.
[27] Wang, Chao; Yuan, Haiyang; Lu, Guanzhong; Wang, Haifeng*.Oxygen vacancies and alkaline metal boost CeO2 catalyst for enhanced soot combustion activity: A first-principles evidence.Applied Catalysis B: Environmental , 2021, 281: 119468.
[28] Menglei Jia#; Jianfu Chen#; Zhuangzhuang Lai; P. Hu; Haifeng Wang*.SSIA: A sensitivity-supervised interlock algorithm for high-performance microkinetic solving.Journal of Chemical Physics, 2021, 154(/): 024108.
[29] Chuan Zhou#; Haiyang Yuan#; P. Hu; Haifeng Wang*.A general doping rule: rational design of Ir-doped catalysts for the oxygen evolution reaction.Chemical communications, 2020, 56(96): 15201-15204.
[30] Qiao, Wen-Cheng; Wu, Jiawei; Zhang, Ran; Ou-Yang, Wei; Chen, Xiaohong; Yang, Guang; Chen, Qun; Wang, Xue Lu*; Wang, Hai Feng*; Yao, Ye-Feng*.In situ NMR Investigation of the Photoresponse of Perovskite Crystal.Matter, 2020, 3(6): 2042-2054.
[31] Chen, Wu-Hua*; Xiong, Jin-Hua; Teng, Xue; Mi, Jin-Xiao; Hu, Zhi-Biao; Wang, Haifeng*; Chen, Zuofeng*.A novel heterogeneous Co(II)-Fenton-like catalyst for efficient photodegradation by visible light over extended pH.Science China Chemistry, 2020, 63(12): 1825-1836.
[32] Zhang, Longsheng; Yuan, Haiyang; Wang, Liping; Zhang, Hui; Zang, Yijing; Tian, Yao; Wen, Yunzhou; Ni, Fenglou; Song, Hao; Wang, Haifeng; Zhang, Bo; Peng, Huisheng.The critical role of electrochemically activated adsorbates in neutral OER.Science China-Materials, 2020, 63(12): 2509-2516.
[33] Song, Xiaojie; Liu, Xiaohui*; Wang, Haifeng; Guo, Yong; Wang, Yanqin*.Improved Performance of Nickel Boride by Phosphorus Doping as an Efficient Electrocatalyst for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.Industrial & Engineering Chemistry Research, 2020, 59(39): 17348-17356.
[34] Gong, Honghui; Zhou, Chuan; Cui, Yan; Dai, Sheng; Zhao, Xiuge; Luo, Ruihan; An, Pengfei; Li, Huan; Wang, Haifeng; Hou, Zhenshan.Direct Transformation of Glycerol to Propanal using Zirconium Phosphate-Supported Bimetallic Catalysts.Chemsuschem, 2020, 13(18): 4954-4966.
[35] Zhang, Jiawei; Hu, Peijun; Wang, Haifeng.Amorphous Catalysis: Machine Learning Driven High-Throughput Screening of Superior Active Site for Hydrogen Evolution Reaction.Journal of Physical Chemistry C, 2020, 124(19): 10483-10494.
[36] Xu, Bei-Bei; Zhou, Min; Zhang, Ran; Ye, Man; Yang, Ling-Yun; Huang, Rong; Wang, Hai Feng*; Wang, Xue Lu*; Yao, Ye-Feng*.Solvent Water Controls Photocatalytic Methanol Reforming.Journal of Physical Chemistry Letters, 2020, 11(9): 3738-3744.
[37] Hui Ma#; Jian-Fu Chen#; Hai Feng Wang; Peijun Hu; Wei Ma*; Yi-Tao Long.Exploring dynamic interactions of single nanoparticles at interfaces for surface-confined.electrochemical behavior and size measurement.Nature Communications, 2020, Accepted.
[38] Jiawei Zhang; Jianfu Chen; Peijun Hu; Hai Feng Wang*.Identifying the composition and atomic distribution of Pt-Au bimetallic nanoparticle with machine learning and genetic algorithm.Chinese Chemical Letters, 2020, 31(3): 890-896.
[39] Chuan Zhou; Binghu Zhang; P. Hu; Hai Feng Wang*.An effective structural descriptor to quantify the reactivity of lattice oxygen in CeO2 subnano-clusters.Physical Chemistry Chemical Physics, 2020, 22(3): 1721-1726.
[40] Ji Xuan-Xuan; Wang Hai-Feng*; Hu Pei-Jun.First principles study of Fenton reaction catalyzed by FeOCl: reaction mechanism and location of active site.Rare Metals, 2019, 38(8): 783-792.
[41] Jianfu Chen; Yu Mao; Haifeng Wang*; Peijun Hu*.A Simple Method To Locate the Optimal Adsorption Energy for the Best Catalysts Directly.ACS Catalysis, 2019, 9: 2633-2638.
[42] Jiamin Jin; Jianfu Chen; Haifeng Wang*; Peijun Hu.Insight into room-temperature catalytic oxidation of NO by CrO2(110): A DFT study.Chinese Chemical Letters, 2019, 30(3): 618-623.
[43] Guo Chenxi; Wang Ziyun; Wang Dong; Wang Hai-Feng*; Hu P.*.First-Principles Determination of CO Adsorption and Desorption on Pt(111) in the Free Energy Landscape.Journal of Physical Chemistry C, 2018, 122(37): 21478-21483.
[44] Jin Jiamin; Sun Ningling; Hu Wende; Yuan Haiyang; Wang Haifeng*; Hu Peijun*.Insight into Room-Temperature Catalytic Oxidation of Nitric oxide by Cr2O3: A DFT Study.ACS Catalysis, 2018, 8(6): 5415-5424.
[45] Wang Yu Lei; Jin Jia Min; Li Yu Hang; Wang Xue Lu; Zhang Bo; Gong Xiwen; Wang Hai Feng; Chen Ai Ping; Zheng Li Rong; Hu P.; Yang Hua Gui*.Ce0.3Zr0.7O1.88NO0.12 solid solution as a stable photocatalyst for visible light driven water splitting.Applied Catalysis B: Environmental , 2018, 224: 733-739.
[46] Yang Mingxia; Yuan Haiyang; Wang Haifeng*; Hu P.*Insights into the selective catalytic reduction of NO by NH3 over Mn3O4(110): a DFT study coupled with microkinetic analysis.Science China Chemistry, 2018, 61(4): 457-467.
[47] Wang Jinglin; Wang Haifeng*; Hu P.*Theoretical insight into methanol steam reforming on indium oxide with different coordination environments.Science China Chemistry, 2018, 61(3): 336-343.
[48] Song Heli; Zhang Jing; Jin Jiamin; Wang Haifeng; Xie Yongshu*.Porphyrin sensitizers with modified indoline donors for dye-sensitized solar cells.Journal of Materials Chemistry C, 2018, 6(15): 3927-3936.
[49] Wang Dong; Sheng Tian; Chen Jianfu; Wang Hai-Feng*; Hu P.*.Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2.Nature Catalysis, 2018, 1(4): 291-299.
[50] Ma Wenbao; Yuan Haiyang; Wang Haifeng*; Zhou Qingqing; Kong Kang; Li Difan; Yao Yefeng; Hou Zhenshan*.Identifying catalytically active mononuclear peroxoniobate anion of ionic liquids in the epoxidation of olefins.ACS Catalysis, 2018, 8(5): 4645-4659.
[51] Sun Mengqing; Xia Jie; Wang Haifeng; Liu Xiaohui*; Xia Qineng; Wang Yanqin.An efficient NixZryO catalyst for hydrogenation of bio-derived methyl levulinate to Γ-valerolactone in water under low hydrogen pressure.Applied Catalysis B: Environmental , 2018, 227: 488-498.
[52] Yuan Haiyang; Sun Ningning; Chen Jianfu; Jin Jiamin; Wang Haifeng*; Hu Peijun.Insight into the NH3-Assisted Selective Catalytic Reduction of NO on β-MnO2(110): Reaction Mechanism, Activity Descriptor, and Evolution from a Pristine State to a Steady State.ACS Catalysis, 2018, 8(10): 9269-9279.
[53] Yuan Haiyang; Chen Jianfu; Wang Haifeng*; Hu Peijun.Activity Trend for Low-Concentration NO Oxidation at Room Temperature on Rutile-Type Metal Oxides.ACS Catalysis, 2018, 8(11): 10864-10870.
[54] Yuan Haiyang; Chen Jianfu; Guo Yanglong; Wang Haifeng*; Hu P.*.Insight into the Superior Catalytic Activity of MnO2 for Low-Content NO Oxidation at Room Temperature.Journal of Physical Chemistry C, 2018, 122(44): 25365-25373.
[55] Peng Chao; Chen Jianfu; Wang Haifeng*; Hu P.*.First-Principles Insight into the Degradation Mechanism of CH3NH3PbI3Perovskite: Light-Induced Defect Formation and Water Dissociation.Journal of Physical Chemistry C, 2018, 122(48): 27340-27349.
[56] Zhang Le; Mao Fangxin; Zheng Li Rong; Wang Hai Feng*; Yang Xiao Hua*; Yang Hua Gui*.Tuning Metal Catalyst with Metal-C3N4Interaction for Efficient CO2 Electroreduction.ACS Catalysis, 2018, 8(12): 11035-11041.
[57] Mao Yu; Wang Hai-Feng*; Hu P.*.Theory and applications of surface micro-kinetics in the rational design of catalysts using density functional theory calculations.Wiley Interdisciplinary Reviews-Computational Molecular Science, 2017, 7(6): e1321.doi: 10.1002/wcms.1321. (IF:14.0)
[58] Peng Chao; Wang Jinglin; Wang Haifeng*; Hu P.*.Unique Trapped Dimer State of the Photogenerated Hole in Hybrid Orthorhombic CH3NH3PbI3 Perovskite: Identification, Origin, and Implications.Nano Letters, 2017, 17(12): 7724-7730. (IF:12.7)
[59] Dai Yimeng; Chen Zongjia; Guo Yanglong; Lu Guanzhong; Zhao Yifang; Wang Haifeng*; Hu P.*.Significant enhancement of the selectivity of propylene epoxidation for propylene oxide: a molecular oxygen mechanism.Physical Chemistry Chemical Physics, 2017, 19(36): 25129-25139.
[60] Peng Chao; Reid Glenn; Wang Haifeng; Hu P.*.Perspective: Photocatalytic reduction of CO2 to solar fuels over semiconductors.Journal of Chemical Physics, 2017, 147(3): 030901.
[61] Zhan Wangcheng; Wang Jinglin; Wang Haifeng; Zhang Jinshui; Liu Xiaofei; Zhang Pengfei; Chi Miaofang; Guo Yanglong; Guo Yun; Lu Guanzhong; Sun Shouheng; Dai Sheng*; Zhu Huiyuan*.Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation.Journal of the American Chemical Society, 2017, 139(26): 8846-8854.
[62] Chen Zongjia; Mao Yu; Chen Jianfu; Wang Haifeng*; Li Yadong*; Hu P.*.Understanding the Dual Active Sites of the FeO/Pt(111) Interface and Reaction Kinetics: Density Functional Theory Study on Methanol Oxidation to Formaldehyde.ACS Catalysis, 2017, 7(7): 4281-4290. (IF: 10.6)
[63] Gengnan Li; Liang Li; Haiyang Yuan; Haifeng Wang; Huarong Zeng; Jianlin Shi.Alkali-assisted mild aqueous exfoliation for single-layered and structure-preserved graphitic carbon nitride nanosheets.Journal of Colloid and Interface Science, 2017, 495: 19-26.
[64] Wu Wenjun; Xiang Huaide; Fan Wei; Wang Jinglin; Wang Haifeng; Hua Xin; Wang Zhaohui; Long Yitao; Tian He; Zhu Wei-Hong*.Cosensitized Porphyrin System for High-Performance Solar Cells with TOF-SIMS Analysis.ACS Applied Materials & Interfaces, 2017, 9(19): 16081-16090. (IF: 10.6)
[65] Jiawei Zhang; Chao Peng; Haifeng Wang*; Peijun Hu*.Identifying the Role of Photogenerated Holes in Photocatalytic Methanol Dissociation on Rutile TiO2(110).ACS Catalysis, 2017, 7(4): 2374-2380.
[66] Ma Wei; Ma Hui; Chen Jian-Fu; Peng Yue-Yi; Yang Zhe-Yao; Wang Hai-Feng; Ying Yi-Lun; Tian He*; Long Yi-Tao*.Tracking motion trajectories of individual nanoparticles using time-resolved current traces.Chemical Science, 2017, 8(3): 1854-1861.
[67] Mao, Yu; Wang, Ziyun; Wang, Hai-Feng*; Hu, P.*.Understanding Catalytic Reactions over Zeolites: A Density Functional Theory Study of Selective Catalytic Reduction of NOx by NH3 over Cu-SAPO-34.ACS Catalysis, 2016, 6(11): 7882-7891. (IF: 10.6)
[68] Chen, Jian-Fu; Mao, Yu; Wang, Hai-Feng*; Hu, P.*.Reversibility Iteration Method for Understanding Reaction Networks and for Solving Microkinetics in Heterogeneous Catalysis.ACS Catalysis, 2016, 6(10): 7078-7087. (IF: 10.6)
[69] Chen, Jian-Fu; Mao, Yu; Wang, Hai-Feng*; Hu, P.*.Theoretical Study of Heteroatom Doping in Tuning the Catalytic Activity of Graphene for Triiodide Reduction.ACS Catalysis, 2016, 6(10): 6804-6813. (IF: 10.6)
[70] Wang, Hai-Feng; Wang, Dong; Liu, Xiaohui; Guo, Yang-Long; Lu, Guan-Zhong*; Hu, Peijun*.Unexpected C-C Bond Cleavage Mechanism in Ethylene Combustion at Low Temperature: Origin and Implications.ACS Catalysis, 2016, 6(8): 5393-5398. (IF: 10.6)
[71] Peng, Chao; Wang, Haifeng*; Hu, P.*.Theoretical insights into how the first C-C bond forms in the methanol-to-olefin process catalysed by HSAPO-34.Physical Chemistry Chemical Physics, 2016, 18(21): 14495-14502.
[72] Chen, Chen; Yuan, Haiyang; Wang, Haifeng*; Yao, Yefeng; Ma, Wenbao; Chen, Jizhong; Hou, Zhenshan*.Highly Efficient Epoxidation of Allylic Alcohols with Hydrogen Peroxide Catalyzed by Peroxoniobate-Based Ionic Liquids.ACS Catalysis, 2016, 6(5): 3354-3364. (IF: 10.6)
[73] Xia Qineng#; Chen Zongjia#; Shao Yi; Gong Xueqing; Wang, Hai-Feng*; Liu Xiaohui; Parker Stewart F.; Han Xue; Yang Sihai*; Wang Yanqin*.Direct hydrodeoxygenation of raw woody biomass into liquid alkanes.Nature Communications 2016, doi: 10.1038/ncomms11162 , 2016, 7: 11162. (IF:12.1; ESI highly cited paper)
[74] Dong Wang; Jun Jiang; Wang, Hai-Feng*; Peijun Hu*.Revealing the Volcano-Shaped Activity Trend of Triiodide ReductionReaction: A DFT Study Coupled with Microkinetic Analysis.ACS Catalysis, 2015, 6(2): 733-741. (IF: 10.6)
[75] Wang Lulu; Al-Mamun Mohammad; Liu Porun; Wang Yun; Yang Hua Gui; Wang, Hai-Feng; Zhao Huijun*.The search forefficient electrocatalysts as counter electrode materials for dye-sensitizedsolar cells: mechanistic study, material screening and experimental validation.NPG Asia Materials, 2015, 7: 226.
[76] Qian Ling; Chen Jian Fu; Li Yu Hang; Wu Long; Wang Hai Feng; Chen Ai Ping; Hu P; Zheng Li Rong*; Yang Hua Gui.Orange Zinc Germanate with Metallic Ge-Ge Bonds as a Chromophore-Like Center for Visible-Light-Driven Water Splitting.Angewandte Chemie International Edition, 2015, 54(39): 11467-11471.
[77] Yu Mao; Jianfu Chen; Wang, Hai-Feng*; Peijun Hu.Catalyst screening: Refinement of the origin of the volcano curveand its implication in heterogeneous catalysis.Chinese Journal of Catalysis, 2015, 36(9): 1596-1605.
[78] Yu Hang Li; Peng Fei Liu; Lin Feng Pan; Wang, Hai-Feng*; Zhen Zhong Yang; Li Rong Zheng; P. Hu; Hui Jun Zhao; Lin Gu; Hua Gui Yang*.Local atomic structure modulations activate metaloxide as electrocatalyst for hydrogen evolution inacidic water.Nature Communications, 2015, 6: 8064. (IF:12.1)
[79] Yu Hang Li; Chao Peng; Shuang Yang; Wang, Hai-Feng; Hua Gui Yang*.Critical roles of co-catalysts for molecular hydrogen formationin photocatalysis.Journal of Catalysis, 2015, 330: 120-138.
[80] Jiang Hao; Ren Dayong; Wang Haifeng*; Hu Yanjie; Guo Shaojun*; Yuan Haiyang; Hu Peijun; Zhang Ling; Li Chunzhong*.2D Monolayer MoS2-Carbon Interoverlapped Superstructure: Engineering Ideal Atomic Interface for Lithium Ion Storage.Advanced Materials, 2015, 27(24): 3687-3695 (IF: 19.8 ESI highly cited paper)
[81] Wang Ziyun; Wang Hai-Feng; Hu P.*.Possibility of Designing Catalysts beyond the Traditional Volcano Curve: A TheoreticalFramework for Multi-Phase Surfaces.Chemical Science, 2015, 6: 5703-5711.
[82] Hao, Jiang; Dayong, Ren; Haifeng, Wang; Yanjie, Hu; Shaojun, Guo; Haiyang, Yuan; Peijun, Hu; Ling, Zhang; Chunzhong, Li.Batteries: 2D Monolayer MoS2 -Carbon Interoverlapped Superstructure: Engineering Ideal Atomic Interface for Lithium Ion Storage (Adv. Mater. 24/2015).Advanced Materials, 2015, 27(24): 3582-3582.
[83] Mao, Yu*; Wang, Hai-Feng; Hu, P..Theoretical Investigation of NH3-SCR Processes over Zeolites: A Review.International Journal of Quantum Chemistry, 2015, 115(10): 618-630.
[84] Zhang Yanhui; Wu Yanding; Wang, Hai-Feng; Guo Yun*; Wang Li*; Zhan Wangcheng; Guo Yanglong; Lu Guanzhong.The effects of the presence of metal Fe in the CO oxidation over Ir/FeOx catalyst.Catalysis Communications, 2015, 61: 83-87.
[85] Dong Wang; Wang, Hai-Feng*; P. Hu*.Identifying the distinct features of geometric structures for hole trapping to generate radicals on rutile TiO2(110) in photooxidation using density functional theory calculations with hybrid functional.Physical Chemistry Chemical Physics (Cover), 2015, 17: 1549-1555.
[86] Zhang, Yanhui; Cai, Yafeng; Guo, Yun*; Wang, Hai-Feng; Wang, Li*; Lou, Yang; Guo, Yanglong; Lu, Guanzhong; Wang, Yanqing.The effects of the Pd chemical state on the activity of Pd/Al2O3 catalysts in CO oxidation.Catalysis Science & Technology, 2014, 4(11): 3973-3980.
[87] Li, Yibing; Wang, Hai-Feng; Zhang, Haimin*; Liu, Porun; Wang, Yun; Fang, Wenqi; Yang, Huagui; Li, Ying; Zhao, Huijun.A {0001} faceted single crystal NiS nanosheet electrocatalyst for dye-sensitised solar cells: sulfur-vacancy induced electrocatalytic activity.Chemical Communications, 2014, 50: 5569-5571.
[88] Xing, Jun#; Chen, Jian Fu#; Li, Yu Hang; Yuan, Wen Tao; Zhou, Ying; Zheng, Li Rong; Wang, Hai-Feng*; Hu, P.; Wang, Yun; Zhao, Hui Jun; Wang, Yong; Yang, Hua Gui*.Stable Isolated Metal Atoms as Active Sites for Photocatalytic Hydrogen Evolution.Chemistry - A European Journal (Cover), 2014, 20(8): 2138-2144.
[89] Yu, Hou; Zu Peng, Chen; Dong, Wang; Bo, Zhang; Shuang, Yang; Hai Feng, Wang; P., Hu; Hui Jun, Zhao; Hua Gui, Yang.Solar Cells: Highly Electrocatalytic Activity of RuO2 Nanocrystals for Triiodide Reduction in Dye-Sensitized Solar Cells (Small 3/2014).Small, 2014, 10(3): 483-484. (IF: 8.6)
[90] Li, Changjiang; Zhang, Peng; Lv, Rui; Lu, Jianwei; Wang, Tuo; Wang, Shengping; Wang, Hai-Feng; Gong, Jinlong*.Selective Deposition of Ag3PO4 on Monoclinic BiVO4(040) for Highly Efficient Photocatalysis.Small, 2013, 9(23): 3951-3956.
[91] Zhang, Bo#; Zhang, Nan Nan#; Chen, Jian Fu#; Hou, Yu; Yang, Shuang; Guo, Jian Wei; Yang, Xiao Hua; Zhong, Ju Hua; Wang, Hai-Feng*; Hu, P.; Zhao, Hui Jun; Yang, Hua Gui*.Turning Indium Oxide into a Superior Electrocatalyst: Deterministic Heteroatoms.Scientific Reports, 2013, 3: 3109.
[92] Yang, Bo; Gong, Xue-Qing; Wang, Hai-Feng; Cao, Xiao-Ming*; Rooney, John J.; Hu, P.*.Evidence To Challenge the Universality of the Horiuti-Polanyi Mechanism for Hydrogenation in Heterogeneous Catalysis: Origin and Trend of the Preference of a Non-Horiuti-Polanyi Mechanism.Journal of the American Chemical Society, 2013, 135(40): 15244-15250.
[93] Xing, Jun#; Jiang, Hai Bo#; Chen, Jian Fu; Li, Yu Hang; Wu, Long; Yang, Shuang; Zheng, Li Rong; Wang, Hai-Feng*; Hu, P.; Zhao, Hui Jun; Yang, Hua Gui*.Active sites on hydrogen evolution photocatalyst.Journal of Materials Chemistry A (Cover), 2013, 1(48): 15258-15264.
[94] Wang, Xue Lu; Fang, Wen Qi; Wang, Hai-Feng; Zhang, Haimin; Zhao, Huijun; Yao, Yefeng*; Yang, Hua Gui*.Surface hydrogen bonding can enhance photocatalytic H2 evolution efficiency.Journal of Materials Chemistry A, 2013, 1(45): 14089-14096.
[95] Li, Yu Hang#; Xing, Jun#; Chen, Zong Jia; Li, Zhen; Tian, Feng; Zheng, Li Rong; Wang, Hai-Feng*; Hu, P.; Zhao, Hui Jun; Yang, Hua Gui*.Unidirectional suppression of hydrogen oxidation on oxidized platinum clusters.Nature Communications, 2013, 4: 2500. (IF:12.1)
[96] Hou, Yu#; Chen, Zu Peng#; Wang, Dong; Zhang, Bo; Yang, Shuang; Wang, Hai-Feng*; Hu, P.; Zhao, Hui Jun; Yang, Hua Gui*.Highly Electrocatalytic Activity of RuO2 Nanocrystals for Triiodide Reduction in Dye-Sensitized Solar Cells.Small (Cover), 2013, 10(3): 484-492.
[97] Zhang, Bo#; Wang, Dong#; Hou, Yu; Yang, Shuang; Yang, Xiao Hua; Zhong, Ju Hua; Liu, Jian; Wang, Hai-Feng*; Hu, P.; Zhao, Hui Jun; Yang, Hua Gui*.Facet-Dependent Catalytic Activity of Platinum Nanocrystals for Triiodide Reduction in Dye-Sensitized Solar Cells.Scientific Reports, 2013, 3: 1836.
[98] Hou, Yu#; Wang, Dong#; Yang, Xiao Hua; Fang, Wen Qi; Zhang, Bo; Wang, Hai-Feng*; Lu, Guan Zhong; Hu, P.; Zhao, Hui Jun; Yang, Hua Gui*.Rational screening low-cost counter electrodes for dye-sensitized solar cells.Nature Communications (ESI hot paper; ESI Highly cited paper), 2013, 4: 1583. (IF:12.1; ESI highly cited paper; hot paper)
[99] Wang, Hai-Feng; Kavanagh, Richard; Guo, Yang-Long; Guo, Yun; Lu, Guanzhong*; Hu, P.*.Origin of extraordinarily high catalytic activity of Co3O4 and its morphological chemistry for CO oxidation at low temperature.Journal of Catalysis, 2012, 296: 110-119. (IF: 6.8)
[100] Wang, Hai-Feng; Li, Hui-Ying; Gong, Xue-Qing; Guo, Yang-Long; Lu, Guan-Zhong*; Hu, P.*.Oxygen vacancy formation in CeO2 and Ce1-xZrxO2 solid solutions: electron localization, electrostatic potential and structural relaxation.Physical Chemistry Chemical Physics, 2012, 14(48): 16521-16535.
[101] Wang, Hai-Feng; Kavanagh, Richard; Guo, Yang-Long; Guo, Yun; Lu, Guan-Zhong*; Hu, P.*.Structural Origin: Water Deactivates Metal Oxides to CO Oxidation and Promotes Low-Temperature CO Oxidation with Metals.Angewandte Chemie International Edition, 2012, 51(27): 6657-6661. (IF:12.0)
[102] Xing, Jun#; Wang, Hai-Feng#; Yang, Chen; Wang, Dong; Zhao, Hui Jun; Lu, Guan Zhong; Hu, P.; Yang, Hua Gui*.Ceria Foam with Atomically Thin Single-Crystal Walls.Angewandte Chemie International Edition, 2012, 51(15): 3611-3615. (IF:12.0, hot paper)
[103] Chen, Ying; Wang, Hai-Feng; Burch, Robbie; Hardacre, Christopher; Hu, P.*.New insight into mechanisms in water-gas-shift reaction on Au/CeO2(111): A density functional theory and kinetic study.Faraday Discussions, 2011, 152: 121-133.
[104] Li, Hui-Ying; Wang, Hai-Feng; Guo, Yang-Long; Lu, Guan-Zhong*; Hu, P.*.Exchange between sub-surface and surface oxygen vacancies on CeO2(111): a new surface diffusion mechanism.Chemical Communications, 2011, 47(21): 6105-6107.
[105] Xu, Wenjie; Wang, Hai-Feng; Liu, Xiaohui; Ren, Jiawen; Wang, Yanqin*; Lu, Guanzhong*.Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst.Chemical Communications, 2011, 47(13): 3924-3926.
[106] Wang, Hai-Feng; Guo, Yang-Long; Lu, Guanzhong*; Hu, P.*.NO oxidation on platinum group metals oxides: First principles calculations combined with microkinetic analysis.Journal of Physical Chemistry C, 2009, 113(43): 18746-18752.
[107] Wang, Hai-Feng; Guo, Yang-Long; Lu, Guan-Zhong*; Hu, P.*.Maximizing the Localized Relaxation: The Origin of the Outstanding Oxygen Storage Capacity of kappa-Ce2Zr2O8.Angewandte Chemie International Edition, 2009, 48(44): 8289-8292 (IF:12.0, hot paper)
[108] Wang, Hai-Feng; Guo, Yanglong; Lu, Guanzhong*; Hu, P.*.An understanding and implications of the coverage of surface free sites in heterogeneous catalysis.Journal of Chemical Physics, 2009, 130(22): 224701-224706.
[109] Wang, Hai-Feng; Gong, Xue-Qing; Guo, Yang-Long; Guo, Yun; Lu, Guan Zhong*; Hu, P.*.A Model to Understand the Oxygen Vacancy Formation in Zr-Doped CeO2: Electrostatic Interaction and Structural Relaxation.Journal of Physical Chemistry C, 2009, 113(23): 10229-10232.
[110] Li, Hui-Ying; Wang, Hai-Feng; Gong, Xue-Qing; Guo, Yang-Long; Guo, Yun; Lu, Guanzhong*; Hu, P.*.Multiple configurations of the two excess 4f electrons on defective CeO2(111): Origin and implications.Physical Review B, 2009, 79(19): 193401-193404.
[111] Wang, Hai-Feng; Gong, Xue-Qing*; Guo, Yang-Long; Guo, Yun; Lu, Guanzhong*; Hu, P.Structure and Catalytic Activity of Gold in Low-Temperature CO Oxidation.Journal of Physical Chemistry C, 2009, 113(15): 6124-6131.
[112] Chen, Ying; Cheng, Jun; Hu, P.*; Wang, Hai-Feng.Examining the redox and formate mechanisms for water-gas shift reaction on Au/CeO2 using density functional theory.Surface Science, 2008, 602(17): 2828-2834.
[113] Chen, Ying; Hu, P.*; Lee, Ming-Hsien; Wang, Hai-Feng.Au on (111) and (110) surfaces of CeO2: A density-functional theory study.Surface Science, 2008, 602(10): 1736-1741.
[114] Zhang, Xin Yu; Li, Wen Jing; Wu, Xue Feng; Liu, Yuan Wei; Chen, Jiacheng; Zhu, Minhui; Yuan, Hai Yang*; Dai, Sheng; Wang, Hai Feng; Jiang, Zheng; Liu, Peng Fei*; Yang, Hua Gui*.Selective methane electrosynthesis enabled by a hydrophobic carbon coated copper core-shell architecture.Energy & Environmental Science.
[115] Wen, Chun Fang; Zhou, Min; Liu, Peng Fei*; Liu, Yuanwei; Wu, Xuefeng; Mao, Fangxin; Dai, Sheng; Xu, Beibei; Wang, Xue Lu; Jiang, Zheng; Hu, P.; Yang, Shuang; Wang, Hai Feng*; Yang, Hua Gui*.Highly Ethylene-Selective Electrocatalytic CO2 Reduction Enabled by Isolated Cu-S Motifs in Metal-Organic Framework Based Precatalysts.Angewandte Chemie International Edition.
發(fā)表中文期刊論文:
[1]胡旭,劉川,王海豐,黃永民.Ir(100)面上HAN催化分解反應(yīng)機理[J].火箭推進,2021,47(04):79-86.
[2]張澤棟,周敏,陳遠均,柳守杰,王海豐,張劍,冀淑方,王定勝,李亞棟.Pd單原子整體催化劑:功能化的三維結(jié)構(gòu)和優(yōu)異的化學加氫選擇性(英文)[J].Science China(Materials),2021,64(08):1919-1929.
[3]張龍生,袁海洋,王麗平,章輝,臧易靜,田瑤,溫蘊周,倪鳳樓,宋浩,王海豐,張波,彭慧勝.電化學活化吸附物對中性析氧反應(yīng)的影響(英文)[J].Science China Materials,2020,63(12):2509-2516.
[4]范承德,唐璇,王麗,王海豐,詹望成,郭耘.AgIr/MCM-41催化劑上CO催化氧化性能的研究[J].稀有金屬,2019,43(07):686-692.
[5]王荊林,王海豐*,胡培君.不同晶體結(jié)構(gòu)金屬氧化物催化小分子分解的BEP關(guān)系[J].華東理工大學學報(自然科學版),2018,44(05):707-714.
[6]彭超,陳建富,王海豐,胡培君.Ni/Ce0.75Zr0.25O2界面催化CO2甲烷化密度泛函理論研究[J].中國科學:化學,2015,45(12):1291-1298.
[7]毛羽,陳建富,王海豐,胡培君.催化劑篩選:火山型曲線成因理論解析及其在多相催化中的應(yīng)用(英文)[J].催化學報,2015,36(09):1596-1605.
[8]王海豐. 環(huán)境催化中稀土及過渡金屬催化材料作用機制的第一性原理研究[D].華東理工大學,2012.
發(fā)表中文會議論文:
[1] 王海豐. 光催化反應(yīng)機理模擬及性能調(diào)控[C].2019第三屆全國光催化材料創(chuàng)新與應(yīng)用學術(shù)研討會摘要集.2019:50.
[2] 王海豐. 液固界面光催化反應(yīng)機理及動力學理論研究[C].中國化學會第十屆全國無機化學學術(shù)會議論文集(第四卷).2019:195-196.
[3] 王海豐. 光催化反應(yīng)機理模擬及活性動力學研究[C].2019第四屆中國能源材料化學研討會摘要集.[出版者不詳],2019:232.
[4] Wu, Jiawei; Wang, Haifeng; Hu, Peijun.Dynamic structural evolution of catalyst in a CO oxidation process.ACS Fall National Meeting and Exposition, 2019-08-25 To 2019-08-29.
[5] Lai, Zhuangzhuang; Chen, JianFu; Wang, Haifeng; Hu, Peijun.Estimate of adsorption energy for a series of highly efficient catalysts based on reaction model.ACS Fall National Meeting and Exposition, 2019-08-25 To 2019-08-29.
[6] Zhang Jiawei; Wang Haifeng; Hu Peijun.Identifying the role of photogenerated holes in photocatalytic methanol dissociation on rutile TiO2(110).256th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nanoscience, Nanotechnology and Beyond, 2018-08-19 to 2018-08-23.
[7] Yuan Haiyang; Chen Jianfu; Wang Haifeng; Hu Peijun.Room temperature removal of NO on MnO2: First principles calculations combined with kinetic analysis.254th National Meeting and Exposition of the American-Chemical-Society (ACS) on Chemistry's Impact on the Global Economy, 2017-08-20 to 2017-08-24.
[8] Jin Jiamin; Wang Haifeng; Hu Peijun. Size-dependent activity of CrO3 in catalyzing NO oxidation: From the inert bulk structure to highly efficient supported chain-like CrO3. 254th National Meeting and Exposition of the American-Chemical-Society (ACS) on Chemistry's Impact on the Global Economy, 2017-08-20 to 2017-08-24.
[9] Chen Zong Jia; Wang Haifeng; Hu Peijun.Unraveling the catalytic origin of NbOPO4 catalyst in biomass conversion by density functional theory.253rd National Meeting of the American-Chemical-Society (ACS) on Advanced Materials, Technologies, Systems, and Processes, 2017-04-02 to 2017-04-06.
[10] 馬文保,李迪帆,王海豐,周青青,侯震山. 羧酸配位的過氧鈮酸鹽基離子液體催化烯烴環(huán)氧化[C].第十屆全國催化劑制備科學與技術(shù)研討會(成都)論文集.2018:343-344.
[11] 王海豐,陳建富,胡培君. 催化反應(yīng)約化動力學描述和材料篩選應(yīng)用[C].中國化學會第30屆學術(shù)年會摘要集-第十五分會:表界面結(jié)構(gòu)調(diào)控與催化.2016:14.
[12] 王海豐,王棟,陳建富,胡培君. IRR電催化還原反應(yīng)模擬及材料理論預(yù)測[C].中國化學會第30屆學術(shù)年會摘要集-第十八分會:電子結(jié)構(gòu)理論方法的發(fā)展與應(yīng)用.2016:134.
[13] 王艷芹,夏啟能,陳宗家,王海豐,Sihai Yang. 木質(zhì)生物質(zhì)直接脫氧加氫到烷烴的研究[C].中國化學會第30屆學術(shù)年會摘要集-第三十三分會:綠色化學.2016:6.
[14] 陳建富,王海豐,胡培君. 間隙位N摻雜In2O3催化碘三離子還原反應(yīng)理論預(yù)測[C].中國化學會第29屆學術(shù)年會摘要集——第15分會:理論化學方法和應(yīng)用.2014:112.
[15] 陳建富,王海豐,胡培君. Ni/Ce0.75Zr0.25O2界面催化CO2間隙位N摻雜In2O3催化碘三離子還原反應(yīng)理論預(yù)測[C].中國化學會第十二屆全國量子化學會議論文摘要集.2014:455.
[16] 陳宗家,陳建富,王海豐,胡培君. 光解水制氫Pt基助催化劑的理性設(shè)計和研究[C].中國化學會第十二屆全國量子化學會議論文摘要集.2014:460.
[17] 彭超,陳建富,王海豐,胡培君. Ni/Ce0.75Zr0.25O2界面催化CO2甲烷化的DFT研究[C].中國化學會第十二屆全國量子化學會議論文摘要集.2014:498.
[18] 王海豐; 王棟; 陳建富; 胡培君.染料敏化太陽能電池陰極催化材料的理論篩選與預(yù)測.第十七屆全國催化學術(shù)會議, 中國,浙江省,杭州市, 2014-10-14.
[19] Wang, Dong; Zhang, Bo; Wang, Hai-Feng*; Yang, Huagui; Hu, Peijun.Facet-dependent catalytic activity of platinum nanocrystals for triiodide reduction in dye-sensitized solar cells.245th National Meeting of the American-Chemical-Society (ACS), United States, 2013-04-07 to 2013-04-11.
[20] Wang, Hai-Feng*; Kavanagh, Richard; Guo, Yang-Long; Guo, Yun; Lu, Guanzhong; Hu, Peijun.Structural origin: H2O-induced deactivation on metal oxides but promotion on metals for low-temperature CO oxidation.245th National Meeting of the American-Chemical-Society (ACS), United States, 2013-04-07 to 2013-04-11.
[21] 龔學慶,張潔,Fendy Chen,尹麗麗,王海豐,胡佩君,盧冠忠. 稀土催化的密度泛函理論研究[C].第十四屆全國青年催化學術(shù)會議會議論文集.2013:774-775.
[22] 李會英,郭楊龍,龔學慶,王海豐,郭耘,盧冠忠,P.Hu. CeO2(111)表面氧空缺的擴散機理的密度泛函研究[C].第十一屆全國青年催化學術(shù)會議論文集(下).2007:234-235.
[23] 李會英,郭楊龍,王海豐,郭耘,盧冠忠,P.Hu. 甲烷在Pd/CeO2(111)表面的吸附:密度泛函理論研究[C].第十三屆全國催化學術(shù)會議論文集.2006:211.
榮譽獎勵:
1.高等學校科學研究優(yōu)秀成果獎(科學技術(shù)),王艷芹; 劉曉暉; 夏啟能; 郭勇; 龔學慶; 王海豐; 王健健,教育部, 自然科學, 國家二等獎, (2019)。
2. 國家青年拔尖人才(2017)。
3. 國家自然科學優(yōu)秀青年基金(2016)。
4. 中國科協(xié)“青年人才托舉工程”(2015)。
5. 中國催化新秀獎(2014,1/5)。
6. 上海市曙光學者(2017)。
7. 上海市青年科技啟明星(2014)。
8. 上海市晨光學者(2014)。
9. 華東理工大學青年英才校長獎(2015)。
10.入選華東理工大學首屆青年英才人才計劃(2012)。
催化化學是清潔能源生產(chǎn)、化學治污等能源和環(huán)保領(lǐng)域的核心技術(shù)。我國當前面臨經(jīng)濟高速發(fā)展需求和環(huán)境污染的重大矛盾,發(fā)展催化技術(shù)有效消除氮氧化合物等污染物排放具有重大現(xiàn)實意義。但目前多相催化劑的研制總體仍以“試差法”為主,研制周期一般較長。基于理論計算開展催化劑的科學設(shè)計,有助于從頭揭示催化機制,幫助或指導(dǎo)催化劑研制,是理論和實驗催化研究者的努力目標。
華東理工大學工業(yè)催化研究所王海豐博士致力于催化劑理論設(shè)計或篩選框架的構(gòu)筑和應(yīng)用,在材料結(jié)構(gòu)和性能模擬、催化機理解析、微觀反應(yīng)動力學統(tǒng)計和預(yù)測等方面開展了系列的理論計算研究,并取得了一些創(chuàng)新性成果。目前在國際學術(shù)刊物上發(fā)表SCI論文30余篇,包括Nature Commun.、Angew. Chem. Int. Ed.、Sci. Rep.、J. Catal.等。負責和承擔了國家自然科學基金、國家重大科學研究計劃子課題、上海市自然科學基金等國家和省部級科研項目7項;入選了上海市青年科技啟明星計劃、上海市晨光計劃、華東理工大學青年英才培育計劃及跟蹤等人才項目,并于2014年榮獲了“中國催化新秀獎”。
1.圍繞稀土鈰基氧化物催化材料,建立了儲放氧性能(OSC)定量解析模型,闡明了復(fù)合氧化物鈰鋯固溶體"組成–晶相–OSC"構(gòu)效機制,提出了"局域化結(jié)構(gòu)弛豫"概念在影響儲放氧性能中的關(guān)鍵作用。相關(guān)儲放氧機制的揭示為進一步的材料設(shè)計提供了理論依據(jù)。
鈰基氧化物因優(yōu)異的儲放氧性能(OSC)在三效催化劑中發(fā)揮了至關(guān)重要的角色,但作為該領(lǐng)域的難題,其儲放氧機制長期未得到合理闡述。針對儲放氧過程中的電荷分布問題,揭示了還原態(tài)二氧化鈰(CeO2)體系獨特的多重電子局域方式,其原因歸結(jié)于4f電子的強局域性質(zhì)和豐富的表面結(jié)構(gòu)弛豫類型;針對儲放氧性能的定量解析,提出了將氧空穴形成能分解為鍵能和結(jié)構(gòu)弛豫能兩部分的理論模型,成功地闡述了元素組成和晶相對鈰鋯固溶體儲放氧性能的調(diào)變機制。特別在晶相影響方面,指出局域結(jié)構(gòu)弛豫和局域弛豫單元數(shù)量的最大化是決定材料OSC性能的關(guān)鍵因素。
在此基礎(chǔ)上,于應(yīng)用層面進一步論證了利用CeO2良好的結(jié)構(gòu)弛豫能力制備高比表面積泡沫材料以提高OSC的理論可行性;結(jié)合實驗,成功提出了以鍺酸鈰為原料在氨氣氣氛下高溫焙燒一步生成原子級壁厚(~6 Å)泡沫狀CeO2材料的新方法,并指出NH3還原CeGeO4誘發(fā)晶相分解生成氣態(tài)GeO、協(xié)同原位生成的大量NOx和水蒸氣形成強大內(nèi)壓是CeO2泡沫狀結(jié)構(gòu)的生成誘因。具有埃米級壁厚的三維泡沫狀氧化物材料在國際上尚屬首次報道。
2.圍繞CO低溫氧化反應(yīng),系統(tǒng)地解析了Co3O4催化劑復(fù)雜的結(jié)構(gòu)-活性關(guān)系和高活性根源,并對比研究了水在金屬和氧化物體系中的普遍催化作用機制,為CO低溫氧化催化劑的設(shè)計和抗失活性提供了創(chuàng)新性思路。
作為當前性能最好CO低溫氧化催化劑之一, Co3O4表現(xiàn)出復(fù)雜的結(jié)構(gòu)-活性關(guān)系和明顯的水致失活特性。理論計算系統(tǒng)闡述了原子堆積結(jié)構(gòu)、晶面等對其催化活性的影響規(guī)律,并從原子尺度揭示了Co3O4活性中心結(jié)構(gòu)特征。針對水的催化角色,通過有水和無水條件下反應(yīng)機理的解析對比,揭示出表面羥基物種在Co3O4體系中起著重要的毒化作用,而對于金屬(Pt、Pd等)體系具有促進作用;指出表面羥基在金屬和金屬氧化物表面上的勢能面平滑程度差異是造成該相反現(xiàn)象的根源(見圖1)。該系列工作揭示的構(gòu)效關(guān)系和水的影響機制等可能為理解氧化物催化劑失活、設(shè)計高活性、高穩(wěn)定性的低溫氧化催化劑提供理論參考。
3.圍繞光解水制氫Pt助催化劑的設(shè)計和高效利用,闡述了電子密度、尺寸等對產(chǎn)氫活性的調(diào)變機制,揭示了Pt催化劑的真實活性中心類型;針對光解水制氫逆反應(yīng)的抑制難題,創(chuàng)新性地提出鉑氧化物PtO可有效地抑制H2氧化反應(yīng)的發(fā)生。
通過探究不同氧化態(tài)、顆粒尺寸Pt團簇的催化活性變化趨勢,指出真正的催化活性中心是高度分散或嵌入在TiO2表面的氧化態(tài)Pt原子(簇);特別指出摻雜或超高分散的Pt原子或dimer結(jié)構(gòu)在理論上具有優(yōu)異的催化活性,在此指導(dǎo)下設(shè)計制備的高穩(wěn)定性的單原子Pt催化劑產(chǎn)氫效率提高了6~13倍。
此外,Pt作為最有效的制氫助催化劑之一,同時也會高效催化氫氣氧化反應(yīng)而限制光能轉(zhuǎn)換效率。針對這一挑戰(zhàn),論證了鉑氧化物PtO可在保證制氫活性基礎(chǔ)上有效地抑制H2氧化逆反應(yīng)的發(fā)生,主要原因歸結(jié)為PtO相對于金屬態(tài)Pt具有較低的H原子吸附能力和O2吸附分解能力。這一新型高活性助催化劑材料在國際上為首次報道。
4.針對太陽能電池陰極材料設(shè)計,揭示了液固界面I3--離子電催化還原過程和關(guān)鍵動力學機制,建立了陰極材料的快速理論篩選模型,并成功預(yù)測了鐵銹、RuO2等多種非Pt高性能電極材料。
染料敏化太陽能電池(DSC)是高效利用太陽能的重要途徑,提高鉑電極效率(降低鉑用量)和開發(fā)高效、低成本非鉑陰極催化材料是大規(guī)模應(yīng)用DSC的關(guān)鍵之一。但是,當前陰極材料的研制還處在“trial-and-error”階段,亟待建立基本的理論框架和催化劑篩選策略。
面向陰極材料的理性篩選與設(shè)計,通過反應(yīng)動力學解析和高通量吸附能計算,提出碘原子吸附能是影響整體催化活性的關(guān)鍵參數(shù)和活性判斷指標(見圖2,吸附能太弱不利于I2分子的有效解離、吸附太強造成I*脫附過程難以進行),并定量提出了高活性材料應(yīng)具有的吸附能范圍;成功地預(yù)測了高活性的鐵銹、RuO2等非Pt電極材料并得到實驗驗證。同時,該理論模型在惰性材料改性設(shè)計中也得到成功地應(yīng)用,預(yù)測并指導(dǎo)了氮摻雜In2O3、富缺陷態(tài)NiS(0001)等高效電極材料的設(shè)計和制備。
基于量化計算開展電極材料理性篩選/設(shè)計在國際上總體還處于起步階段,作為太陽能電池領(lǐng)域的一種嘗試,該理論篩選模型的成功應(yīng)用得到了廣泛的關(guān)注和肯定。
來源:科學成果管理與研究 2015年第8期
晚報訊 記者昨天從華東理工大學獲悉,該校材料學院楊化桂教授和化學學院王海豐副教授的一項研究成果在國際知名學術(shù)期刊《自然—通訊》上在線發(fā)表,該研究成果首次提出了以一種新型共催化劑材料——一氧化鉑團簇來控制氫氣反應(yīng)方向,這一發(fā)現(xiàn)將對太陽能光解水制氫領(lǐng)域及相關(guān)清潔能源領(lǐng)域產(chǎn)生積極的影響。
楊化桂課題組首先使用高分子配體作為價態(tài)控制劑,將鉑的前驅(qū)體還原為一氧化鉑并負載在基底光催化劑材料表面。隨后,他們對其微觀結(jié)構(gòu)和原子鍵合等信息進行表征與分析,再結(jié)合氫氣氧化反應(yīng)和光解水制氫等相關(guān)性能檢測,最終在國際上首次發(fā)現(xiàn)這一既能有效抑制氫氣氧化過程、又能高效穩(wěn)定地催化氫氣釋放的新型共催化劑材料,并成功闡明了其單向抑制氫氣氧化過程的作用機理。
來源:新聞晚報 2013年第9期
中國科技創(chuàng)新人物云平臺暨“互聯(lián)網(wǎng)+”科技創(chuàng)新人物開放共享平臺(簡稱:中國科技創(chuàng)新人物云平臺)免責聲明:
1、中國科技創(chuàng)新人物云平臺是:“互聯(lián)網(wǎng)+科技創(chuàng)新人物”的大型云平臺,平臺主要發(fā)揮互聯(lián)網(wǎng)在生產(chǎn)要素配置中的優(yōu)化和集成作用,將互聯(lián)網(wǎng)與科技創(chuàng)新人物的創(chuàng)新成果深度融合于經(jīng)濟社會各領(lǐng)域之中,提升實體經(jīng)濟的創(chuàng)新力和生產(chǎn)力,形成更廣泛的以互聯(lián)網(wǎng)為基礎(chǔ)設(shè)施和實現(xiàn)工具的經(jīng)濟發(fā)展新形態(tài),實現(xiàn)融合創(chuàng)新,為大眾創(chuàng)業(yè),萬眾創(chuàng)新提供智力支持,為產(chǎn)業(yè)智能化提供支撐,加快形成經(jīng)濟發(fā)展新動能,促進國民經(jīng)濟提質(zhì)增效升級。
2、中國科技創(chuàng)新人物云平臺暨“互聯(lián)網(wǎng)+”科技創(chuàng)新人物開放共享平臺內(nèi)容來源于互聯(lián)網(wǎng),信息都是采用計算機手段與相關(guān)數(shù)據(jù)庫信息自動匹配提取數(shù)據(jù)生成,并不意味著贊同其觀點或證實其內(nèi)容的真實性,如果發(fā)現(xiàn)信息存在錯誤或者偏差,歡迎隨時與我們聯(lián)系,以便進行更新完善。
3、如果您認為本詞條還有待完善,請編輯詞條。
4、如果發(fā)現(xiàn)中國科技創(chuàng)新人物云平臺提供的內(nèi)容有誤或轉(zhuǎn)載稿涉及版權(quán)等問題,請及時向本站反饋,網(wǎng)站編輯部郵箱:kjcxac@126.com。
5、中國科技創(chuàng)新人物云平臺建設(shè)中盡最大努力保證數(shù)據(jù)的真實可靠,但由于一些信息難于確認不可避免產(chǎn)生錯誤。因此,平臺信息僅供參考,對于使用平臺信息而引起的任何爭議,平臺概不承擔任何責任。