于海洋,1982年6月出生, 博士,海歸學(xué)子,現(xiàn)任中國(guó)石油大學(xué)(北京)石油工程學(xué)院、碳中和示范性能源學(xué)院教授、博士生導(dǎo)師、國(guó)家級(jí)青年人才。
教育及工作經(jīng)歷:
2001-2005 大連理工大學(xué) 動(dòng)力工程 本科
2005-2008 清華大學(xué) 熱能工程 碩士
2008-2012 美國(guó)德州大學(xué)奧斯汀分校(UT-Austin) 石油工程 博士
2012-2015 中國(guó)石油大學(xué)(北京) 講師,校青年拔尖人才
2015-2020 中國(guó)石油大學(xué)(北京) 副教授
2020至今 中國(guó)石油大學(xué)(北京) 教授
社會(huì)與學(xué)術(shù)兼職:
[1] 國(guó)家領(lǐng)軍期刊《Petroleum Science》副主編
[2] 中國(guó)工程院院刊《Engineering》青年編委
[3] 核心期刊《石油科學(xué)通報(bào)》執(zhí)行編委
[4] 《非常規(guī)油氣》編委
[5] 國(guó)家標(biāo)準(zhǔn)化管理委員會(huì)能源管理分技術(shù)委員會(huì) 委員
[6] 國(guó)際標(biāo)準(zhǔn)化組織(ISO)工作組專(zhuān)家
[7] 浙江清華長(zhǎng)三角研究院 客座研究員
[8] 中國(guó)石油大學(xué)(北京)石工學(xué)院學(xué)術(shù)委員會(huì) 委員
[9] 中國(guó)石油大學(xué)(北京)研究生督導(dǎo)組 專(zhuān)家
[10] 美國(guó)石油工程師學(xué)會(huì) 會(huì)員
主講課程:
本科課程《油層物理》、《提高采收率》、《氣藏工程》
研究生課程《高等油層物理》
培養(yǎng)研究生情況:
培養(yǎng)研究生數(shù)名。
研究方向:
非常規(guī)油氣滲流與提高采收率、二氧化碳高效利用及封存。
承擔(dān)科研項(xiàng)目情況:
主持縱向項(xiàng)目(項(xiàng)目負(fù)責(zé)人):
[1] 中組部國(guó)家級(jí)人才支撐項(xiàng)目,非常規(guī)油氣滲流與提高采收率,2021.12-2026.12
[2] 國(guó)家自然科學(xué)基金-面上項(xiàng)目,頁(yè)巖油注天然氣開(kāi)發(fā)油氣兩相滲流微尺度效應(yīng)及增油機(jī)理, 2021.01-2024.12
[3] 國(guó)家自然科學(xué)基金-面上項(xiàng)目,致密油藏碳化水驅(qū)提高采收率機(jī)理研究,2019.01-2022.12
[4] 國(guó)家自然科學(xué)基金-石油化工聯(lián)合基金,致密油藏同井縫間注采機(jī)理研究,2018.01-2020.12
[5] 國(guó)家自然科學(xué)基金-青年基金,含油多孔介質(zhì)中超磁性納米顆粒的傳遞機(jī)理研究,2014.01-2016.12
[6] '十三五'國(guó)家科技重大專(zhuān)項(xiàng)子課題,致密油藏碳化水+表面活性劑驅(qū)采油技術(shù)研究, 2017.01-2020.06
[7] '十三五'國(guó)家科技重大專(zhuān)項(xiàng)子課題,分段壓裂水平井油藏工程方法研究,2017.01-2020.12
[8] 國(guó)家重點(diǎn)研發(fā)計(jì)劃子課題,典型行業(yè)企業(yè)能源管理績(jī)效參數(shù)指標(biāo)體系及績(jī)效提升途徑研究,2016.07-2018.12
[9] 提高油氣采收率全國(guó)重點(diǎn)實(shí)驗(yàn)室基金,油氣相互作用對(duì)CO2-原油體系相對(duì)滲透率影響機(jī)制研究,2023.8-2024.8
[10] 油氣資源與探測(cè)國(guó)家重點(diǎn)實(shí)驗(yàn)室基金,二氧化碳提高頁(yè)巖油采收率及埋存機(jī)理,2021.12-2023.12
[11] 頁(yè)巖油氣富集機(jī)理與有效開(kāi)發(fā)國(guó)家重點(diǎn)實(shí)驗(yàn)室基金,頁(yè)巖油CO2吞吐采油技術(shù)研究,2018.08-2019.07
[12] ;-學(xué)院自主項(xiàng)目,微納米孔隙油氣流動(dòng)微尺度效應(yīng),2020.1-2022.12
[13] 校青年拔尖人才基金,超磁性納米顆粒傳遞機(jī)理及聚合物驅(qū)試井研究,2013.01-2015.12
主持橫向課題(項(xiàng)目負(fù)責(zé)人):
[1] 裂縫性油藏天然氣/CO2協(xié)同驅(qū)替波及規(guī)律及注采參數(shù)優(yōu)化研究,中海油研究總院,2024.9-2026.5
[2] 微氣泡與巖心滲透性匹配研究,中石化工程院,2024.10-2025.10
[3] 凝膠調(diào)堵劑體系多因素條件下超長(zhǎng)距離運(yùn)移規(guī)律研究,中海油服,2024.10-2025.6
[4] 氣井解水鎖機(jī)理實(shí)驗(yàn)研究,中石化華美孚泰,2024.6-2024.12
[5] 隴東長(zhǎng)8致密油藏未動(dòng)用儲(chǔ)量CO2驅(qū)混相能力評(píng)價(jià)及配套技術(shù)對(duì)策,中石油長(zhǎng)慶油田,2023.1-2024.7
[6] 不同類(lèi)型低滲油藏氣驅(qū)滲流特征及提高波及系數(shù)關(guān)鍵參數(shù)研究,中海油研究總院,2022.10-2023.12
[7] 盆5凝析氣藏儲(chǔ)層污染綜合治理技術(shù)研究,中石油新疆油田,2022.8-2024.6
[8] 超低滲透油藏注CO2開(kāi)發(fā)技術(shù)政策研究,中石油長(zhǎng)慶油田,2022.7-2023.12
[9] 超低滲油藏水平井滲流距離測(cè)試及壓裂裂縫間距評(píng)價(jià)優(yōu)化,中石油長(zhǎng)慶油田,2022.7-2022.12
[10] 二氧化碳微氣泡在驅(qū)油-封存過(guò)程中的溶解動(dòng)力學(xué)和穩(wěn)定性實(shí)驗(yàn)研究,中石化工程院,2021.9-2022.8
[11] 碳化水強(qiáng)化滲吸置換效率與二氧化碳埋存可行性實(shí)驗(yàn)研究,中石油長(zhǎng)慶油田,2021.9-2022.6
[12] 中東油田流體物性實(shí)驗(yàn)、參數(shù)測(cè)定及水驅(qū)油實(shí)驗(yàn),中石油勘探院,2021.4-2021.12
[13] 侏羅系底水油藏控水材料基礎(chǔ)實(shí)驗(yàn)研究,中石油長(zhǎng)慶油田,2021.02-2021.12
[14] 超高壓裂縫性致密揮發(fā)油藏早期合理開(kāi)發(fā)技術(shù)研究,中石油塔里木油田,2020.10-2023.9
[15] 超低滲-致密油儲(chǔ)層注烴類(lèi)氣體補(bǔ)充能量方式可行性實(shí)驗(yàn)評(píng)價(jià),中石油長(zhǎng)慶油田, 2019.08-2020.10
[16] 致密巖心高溫高壓滲吸機(jī)理研究,中石油勘探院,2019.10-2020.08
[17] 水平井同井縫間注采可行性研究,中石油大慶油田,2018.11-2019.08
[18] 特低滲氣田滲流機(jī)理研究,中海油上海分公司,2015.12-2016.12
起草標(biāo)準(zhǔn):
1、國(guó)家標(biāo)準(zhǔn)GB/T39532-2020《能源績(jī)效測(cè)量和驗(yàn)證指南》
2、國(guó)家標(biāo)準(zhǔn)GB/T39775-2021《能源管理績(jī)效評(píng)價(jià)導(dǎo)則》
國(guó)家發(fā)明專(zhuān)利(排名第1):
[1] 動(dòng)態(tài)滲吸裝置和用于動(dòng)態(tài)滲吸實(shí)驗(yàn)的實(shí)驗(yàn)方法. ZL201811482680.X,2022年授權(quán)
[2] 用于確定通過(guò)萃取實(shí)驗(yàn)萃取出的油量的方法和裝置. ZL201911215681.2,2020年授權(quán)
[3] 高溫高壓條件下強(qiáng)化碳化水的滲吸系統(tǒng). ZL201711054256.0,2020年授權(quán)
[4] 用于確定碳化水驅(qū)油過(guò)程中碳化水對(duì)儲(chǔ)層傷害程度的方法. ZL201910187496.0,2020年授權(quán)
[5] 水平井井下氣液分離井上回注采油系統(tǒng)及其方法. ZL201810032101.5,2020年授權(quán)
[6] 水平井井下氣液分離回注采油系統(tǒng)及其方法. ZL201810032637.7,2020年授權(quán)
[7] 滲吸萃取裝置及滲吸萃取實(shí)驗(yàn)方法. ZL201810980994.6,2020年授權(quán)
[8] 高溫高壓條件下碳化水的驅(qū)替系統(tǒng)及其方法. ZL201711046782.2,2020年授權(quán)
[9] 注水誘發(fā)微裂縫二維擴(kuò)展的物理模擬實(shí)驗(yàn)方法. ZL201710735940.9,2019年授權(quán)
[10] 拉鏈?zhǔn)讲伎p的雙壓裂水平井異井異步注水采油方法. ZL201710078828.2,2019年授權(quán)
[11] 對(duì)稱(chēng)式布縫的分組異井異步注CO2采油方法. ZL201710078827.8,2019年授權(quán)
[12] 對(duì)稱(chēng)式布縫的異井異步注CO2采油方法. ZL201710078521.2,2019年授權(quán)
[13] 多級(jí)壓裂水平井縫間間隔CO2驅(qū)采油方法. ZL201610564574.0,2018年授權(quán)
[14] 多級(jí)壓裂水平井縫間間隔注水吞吐采油方法. ZL201610253549.0,2018年授權(quán)
[15] 多級(jí)壓裂水平井縫間間隔注水吞吐采油方法. ZL201610195661.3,2018年授權(quán)
[16] 水平井多參數(shù)組合找水測(cè)量裝置. ZL201510730997.0,2018年授權(quán)
[17] 利用地震縱波傳播時(shí)間預(yù)測(cè)地層孔隙壓力的方法. ZL201510166143.4,2017年授權(quán)
代表性期刊論文:
[1] Investigation of CO2 microbubble assisted carbon sequestration and gravity-induced microbubble ripening in low permeability reservoir. Applied Energy, 2024.
[2] Investigation on oil recovery and countercurrent imbibition distance coupling carbonated water with surfactant in shale oil reservoirs. Fuel, 2024.
[3] A new empirical correlation of MMP prediction for oil – impure CO2 systems. Fuel, 2024.
[4] Investigation of non-chemical CO2 microbubbles for enhanced oil recovery and carbon sequestration in heterogeneous porous media. Geoenergy Science and Engineering, 2024.
[5] Nonlinear diffusion mechanism of porous media and countercurrent imbibition distance of fracturing fluids. Physics of Fluids, 2024.
[6] Mechanisms of Imbibition Diffusion and Recovery Enhancing of Fracturing Fluids in Tight Reservoirs. Energy & Fuels, 2024.
[7] Enhanced Oil Recovery and CO2 Storage by Enhanced Carbonated Water injection: A Mini-Review. Energy & Fuels, 2024.
[8] Countercurrent imbibition in low-permeability porous media: Non diffusive behavior and implications in tight oil recovery. Petroleum Science, 2023.
[9] Experimental Investigation on the CO2 Effective Distance and CO2‑EOR Storage for Tight Oil Reservoir. Energy & Fuels, 2023.
[10] A Systematic Method to Investigate the EOR Mechanism of Nanospheres: Laboratory Experiments from Core to Micro Perspective. Energy & Fuels, 2023.
[11] Theoretical Investigation of Nonlinear-Diffusion Countercurrent Imbibition for Porous Medium with Micro-/Nanopores. Energy & Fuels, 2023.
[12] Numerical study on natural gas injection with allied in-situ injection and production for improving shale oil recovery. Fuel, 2022.
[13] Experimental investigation on plugging performance of nanospheres in low-permeability reservoir with bottom water. Advances in Geo-Energy Research, 2022.
[14] Extraction of shale oil with supercritical CO2: Effects of number of fractures and injection pressure. Fuel, 2021.
[15] Applications of Artificial Intelligence in Oil and Gas Development. Archives of Computational Methods in Engineering, 2021.
[16] Experimental study on EOR performance of CO2-based flooding methods on tight oil. Fuel, 2021.
[17] Semi Analytical Modelling of Water Injector Test with Fractured Channel in Tight Oil Reservoir. Rock Mechanics and Rock Engineering, 2020.
[18] Determination of minimum near miscible pressure region during CO2 and associated gas injection for tight oil reservoir in Ordos Basin China. Fuel, 2020.
[19] Semi-analytical Modelling of Water Injector Test with Fractured Channel in Tight Oil Reservoir. Rock Mechanics and Rock Engineering, 2020.
[20] Feasibility Study of Improved Unconventional Reservoir Performance with Carbonated Water and Surfactant. Energy, 2019.
[21] Application of Cumulative-in-situ-injection-production Technology to Supplement Hydrocarbon Recovery Among Fractured Tight Oil Reservoirs: A Case Study in Changqing Oilfield, China. Fuel, 2019.
[22] Interference well-test model for vertical well with double-segment fracture in a multi-well system. Journal of Petroleum Science and Engineering, 2019.
[23] Interference testing model of multiply fractured horizontal well with multiple injection wells. Journal of Petroleum Science and Engineering, 2019.
[24] Pressure-Transient Analysis of Water Injectors Considering the Multiple Closures of Waterflood-Induced Fractures in Tight Reservoir: Case Studies in Changqing Oilfield China. Journal of Petroleum Science and Engineering, 2019.
[25] A compositional model for CO2 flooding including CO2 equilibria between water and oil using the Peng-Robinson equation of state with the Wong-Sandler mixing rule. Petroleum Science, 2019.
[26] Analytical interference testing analysis of multi-segment horizontal well. Journal of Petroleum Science and Engineering, 2018.
[27] An Innovative Model to Evaluate Fracture Closure of Multi-Fractured Horizontal Well In Tight Gas Reservoir Based on Bottom-Hole Pressure. Journal of Natural Gas Science and Engineering, 2018.
[28] A Novel Well-Testing Model to Analyze Production Distribution of Multi-Stage Fractured Horizontal Well. Journal of Natural Gas Science and Engineering, 2018.
[29] A Semianalytical Methodology to Diagnose the Locations of Underperforming Hydraulic Fractures Through Pressure-Transient Analysis in Tight Gas Reservoir. SPE Journal, 2017.
[30] The Physical Process and Pressure-Transient Analysis Considering Fractures Excessive Extension in Water Injection Wells. Journal of Petroleum Science and Engineering, 2017.
[31] Semi-Analytical Modeling for Water Injection Well in Tight Reservoir Considering the Variation of Waterflood-Induced Fracture Properties–Case Studies in Changqing Oilfield China. Journal of Petroleum Science and Engineering, 2017.
[32] A Semianalytical Approach to Estimate Fracture Closure and Formation Damage of Vertically Fractured Wells in Tight Gas Reservoir. Journal of Petroleum Science and Engineering, 2016.
[33] Investigation of Nanoparticle Adsorption During Transport in Porous Media. SPE Journal, 2015.
[34] Flow enhancement of water-based nanoparticle dispersion through microscale sedimentary rocks. Scientific Reports, 2015.
[35] Well testing interpretation method and application in triple‐layer reservoirs by polymer flooding. Materialwissenschaft Und Werkstofftechnik, 2015.
[36] Transport and retention of aqueous dispersions of superparamagnetic nanoparticles in sandstone. Journal of Petroleum Science and Engineering, 2014.
[37] 溫度循環(huán)荷載下花崗巖微裂隙演化試驗(yàn). 科學(xué)技術(shù)與工程, 2024.
[38] CO2微氣泡溶解動(dòng)力學(xué)及提高采收率機(jī)理研究. 力學(xué)學(xué)報(bào), 2023.
[39] 雙碳目標(biāo)下煤炭深部流態(tài)化開(kāi)采及前景. 潔凈煤技術(shù), 2023.
[40] 新型低傷害無(wú)返排胍膠壓裂液在致密油儲(chǔ)層中的應(yīng)用. 陜西科技大學(xué)學(xué)報(bào), 2023.
[41] 海上低滲油藏CO2微泡沫驅(qū)提高采收率實(shí)驗(yàn)與數(shù)值模擬研究. 中國(guó)海上油氣, 2023.
[42] 水氣交替CO2咸水層地質(zhì)封存數(shù)值模擬研究. 中國(guó)海上油氣, 2023.
[43] 地層油氣高溫相態(tài)實(shí)驗(yàn)一致性檢驗(yàn)方法. 特種油氣藏, 2023.
[44] 基于不穩(wěn)定壓力試井分析的致密氣井壓裂后產(chǎn)能評(píng)估. 特種油氣藏, 2023.
[45] 聚合物驅(qū)壓裂井油水兩相滲流不穩(wěn)定壓力分析方法. 石油勘探與開(kāi)發(fā), 2022.
[46] 超低滲透油藏注水誘導(dǎo)動(dòng)態(tài)裂縫開(kāi)發(fā)理論及實(shí)踐. 中國(guó)科學(xué):技術(shù)科學(xué), 2022.
[47] 裂縫性非均質(zhì)致密儲(chǔ)層自適應(yīng)應(yīng)力敏感性研究. 石油鉆探技術(shù), 2022.
[48] 致密砂巖逆向滲吸作用距離實(shí)驗(yàn)研究. 力學(xué)學(xué)報(bào), 2021.
[49] 碳化水驅(qū)提高采收率研究進(jìn)展. 石油科學(xué)通報(bào), 2020.
[50] 致密油藏碳化水驅(qū)提高采收率方法. 大慶石油地質(zhì)與開(kāi)發(fā), 2019.
[51] 水平井同井注采技術(shù). 大慶石油地質(zhì)與開(kāi)發(fā), 2019.
[52] 壓裂水平井裂縫和水平井筒不規(guī)則產(chǎn)油試井分析. 大慶石油地質(zhì)與開(kāi)發(fā), 2018.
[53] 致密油藏多級(jí)壓裂井異井異步注采可行性研究. 石油科學(xué)通報(bào), 2018.
[54] 能源管理體系評(píng)價(jià)指標(biāo)與應(yīng)用現(xiàn)狀分析. 中國(guó)標(biāo)準(zhǔn)化, 2018.
[55] 致密油藏多級(jí)壓裂水平井同井縫間注采可行性. 石油學(xué)報(bào), 2017.
[56] 多段壓裂水平井不均勻產(chǎn)油試井模型. 中國(guó)石油大學(xué)學(xué)報(bào):自然科學(xué)版, 2017.
[57] ISO50006、ISO50015與ISO50047的比較與探究. 標(biāo)準(zhǔn)科學(xué), 2016.
代表性會(huì)議論文:
[1] The Investigation into Carbonated Water as Pre-Fracturing Fluid to Improve Shale Oil Recovery by CT Online Scanning and Imbibition Experiments. SPE IOR年會(huì), 2024.
[2] Experimental Investigation of Non-Chemical CO2 Microbubbles EOR Performance in Low-Permeability Resevoirs. International Petroleum Technology Conference, 2024.
[3] Transient Analysis of Sandface and Wellbore Temperature in Naturally Fractured Geothermal Reservoirs: Numerical and Analytical Approaches. SPE年會(huì), 2022.
[4] Pressure transient analysis of wells in the fault-karst carbonate reservoirs with vertical beads-on-string structure: Case studies in Shunbei Oilfield, Tarim Basin of Northwestern China. SPE年會(huì), 2021.
[5] Numerical study on the temperature behavior in naturally fractured geothermal reservoirs and analysis methodology for geothermal reservoir characterization and development. SPE年會(huì), 2021.
[6] Application of inter-fracture injection and production in a cluster well to enhance oil recovery. SPE年會(huì), 2019.
[7] Allied in-situ injection and production for fractured horizontal wells to increase hydrocarbon recovery in tight oil reservoirs: a case study in Changqing Oilfield. International Petroleum Technology Conference, 2019.
[8] A Novel Multi-Well Interference Testing Model of a Fractured Horizontal Well and Vertical Wells. SPE Annual Technical Conference and Exhibition, 2018.
[9] Case Studies: Pressure-Transient Analysis for Water Injector with the Influence of Waterflood-Induced Fractures in Tight Reservoir. SPE Improved Oil Recovery Conference, 2018.
[10] Estimation of Non-Uniform Production Rate Distribution of Multi-Fractured Horizontal Well Through Pressure Transient Analysis: Model and Case Study. SPE Annual Technical Conference and Exhibition, 2017.
[11] A Novel Well Testing Inversion Method for Characterization of Non-Darcy Flow Behavior in Low Permeability Reservoirs. SPE Annual Technical Conference and Exhibition, USA, 2017.
[12] Successful Application of Well Testing and Electrical Resistance Tomography to Determine Production Contribution of Individual Fracture and Water-Breakthrough Locations of Multifractured Horizontal Well in Changqing Oil Field, China. SPE Annual Technical Conference and Exhibition, 2017.
[13] Transport and Retention of Aqueous Dispersions of Paramagnetic Nanoparticles in Reservoir Rocks. SPE Improved Oil Recovery Symposium, 2010.
科研教學(xué)榮譽(yù)獎(jiǎng)勵(lì):
[1] 中國(guó)石油和化學(xué)工業(yè)聯(lián)合會(huì) 科技進(jìn)步二等獎(jiǎng),2024(排名1)
[2] 中國(guó)石油和化學(xué)工業(yè)聯(lián)合會(huì) 創(chuàng)新團(tuán)隊(duì)獎(jiǎng),2023
[3] 中國(guó)商業(yè)聯(lián)合會(huì) 科技進(jìn)步一等獎(jiǎng),2023(排名3)
[4] 中國(guó)石油和化工自動(dòng)化應(yīng)用協(xié)會(huì) 科技創(chuàng)新團(tuán)隊(duì)獎(jiǎng),2022
[5] 國(guó)家級(jí)青年人才,2021.
[6] 中國(guó)石油和化工自動(dòng)化應(yīng)用協(xié)會(huì) 技術(shù)發(fā)明一等獎(jiǎng),2020(排名2)
[7] 中國(guó)石油和化工自動(dòng)化應(yīng)用協(xié)會(huì) 科技進(jìn)步一等獎(jiǎng),2020(排名8)
[8] 陜西省科技進(jìn)步二等獎(jiǎng),2020(排名4)
[9] 中國(guó)石油和化學(xué)工業(yè)聯(lián)合會(huì) 科技進(jìn)步獎(jiǎng)二等獎(jiǎng),2019(排名2)
[10] 全國(guó)滲流力學(xué)學(xué)術(shù)會(huì)議,優(yōu)秀會(huì)議論文獎(jiǎng),2023
[11] 中國(guó)石油學(xué)會(huì)石油工程專(zhuān)業(yè)委員會(huì),優(yōu)秀會(huì)議論文一等獎(jiǎng), 2018
[12] 中國(guó)石油學(xué)會(huì)海洋石油分會(huì),優(yōu)秀會(huì)議論文獎(jiǎng), 2018
[13] 中國(guó)石油學(xué)會(huì),第十屆青年學(xué)術(shù)年會(huì)優(yōu)秀論文特等獎(jiǎng), 2017
[14] 中國(guó)石油大學(xué)(北京)2022-2024學(xué)年度優(yōu)秀教師,2024
[15] 中國(guó)石油大學(xué)(北京)優(yōu)秀共產(chǎn)黨員,2024
[16] 中國(guó)石油大學(xué)(北京)科技創(chuàng)新優(yōu)秀指導(dǎo)教師,2023、2020
[17] 中國(guó)石油大學(xué)(北京)2020-2022學(xué)年度優(yōu)秀教師,2022
[18] 中國(guó)石油工程設(shè)計(jì)大賽優(yōu)秀指導(dǎo)教師,2022、2021
[19] 校級(jí)教學(xué)成果一等獎(jiǎng),2021、2019
[20] 首批國(guó)家級(jí)一流本科課程《油層物理》,2020
[21] 中國(guó)石油大學(xué)(北京)石油工程學(xué)院院長(zhǎng)獎(jiǎng)-最佳貢獻(xiàn)獎(jiǎng), 2015
[22] 中國(guó)石油大學(xué)(北京)青年教學(xué)骨干教師, 2015
[23] 中國(guó)石油大學(xué)(北京)青年拔尖人才, 2012
[24] SPE提高采收率年會(huì)最佳論文獎(jiǎng), 2010
2014油氣藏監(jiān)測(cè)與管理國(guó)際會(huì)議在北京舉行

8月11日至12日,由西安石油大學(xué)、中國(guó)石油大學(xué)(北京)和陜西省石油學(xué)會(huì)聯(lián)合主辦的2014油氣藏監(jiān)測(cè)與管理國(guó)際會(huì)議在北京昌平舉行。來(lái)自國(guó)內(nèi)外石油企業(yè)和高校的120名專(zhuān)家學(xué)者及研究生圍繞“難動(dòng)用油氣資源開(kāi)發(fā)的挑戰(zhàn)和機(jī)會(huì)”的主題進(jìn)行了深入研討和交流。
中國(guó)石油學(xué)會(huì)測(cè)井專(zhuān)業(yè)委員會(huì)主任陸大衛(wèi)致開(kāi)幕辭;國(guó)家信息中心專(zhuān)家委員會(huì)副主任寧家駿作了主題為“扎實(shí)推進(jìn)智慧油田建設(shè),夯實(shí)兩化深度融合基石”的報(bào)告,對(duì)我國(guó)目前信息化建設(shè)的發(fā)展趨勢(shì)進(jìn)行了解讀。來(lái)自加拿大卡爾加里大學(xué)、東方地球物理公司、斯倫貝謝公司、挪威石油公司等多家石油高校和企業(yè)的專(zhuān)家分別作了主題報(bào)告。
在為期兩天的會(huì)議中,石油工程學(xué)院黨委書(shū)記寧正福參與了研討,程時(shí)清、檀朝東教授主持了專(zhuān)題討論,李春蘭、于海洋等多位教師進(jìn)行了專(zhuān)題報(bào)告。
會(huì)上,30位代表舉行了30余場(chǎng)學(xué)術(shù)交流,內(nèi)容涵蓋測(cè)試與生產(chǎn)數(shù)據(jù)分析、測(cè)井、地震、儲(chǔ)層評(píng)價(jià)、油氣藏動(dòng)態(tài)描述與數(shù)值模擬以及智能油田等。
來(lái)源:中國(guó)石油大學(xué) 2014-08-15
中國(guó)石油大學(xué)石油工程學(xué)院召開(kāi)青年教師協(xié)會(huì)成立大會(huì)

6月25日下午,中國(guó)石油大學(xué)石油工程學(xué)院召開(kāi)青年教師協(xié)會(huì)成立大會(huì),校長(zhǎng)張來(lái)斌,石油工程學(xué)院負(fù)責(zé)人及青年教師共40余人參加了會(huì)議。
大會(huì)上,石工學(xué)院院長(zhǎng)陳勉指出,成立青年教師協(xié)會(huì)的目的是為學(xué)院青年教師提供一個(gè)互動(dòng)平臺(tái)來(lái)增進(jìn)了解與建立友誼,并以此促進(jìn)學(xué)術(shù)交流等。學(xué)院黨委書(shū)記寧正福希望,協(xié)會(huì)能夠幫助擴(kuò)大學(xué)院在國(guó)際上的影響力。副院長(zhǎng)劉慧卿表示,學(xué)院會(huì)盡力支持協(xié)會(huì)的成長(zhǎng)壯大。副院長(zhǎng)程林松也鼓勵(lì)協(xié)會(huì)在服務(wù)上能夠做到至始至終的一貫堅(jiān)持。
青年教師們也踴躍發(fā)言,于海洋、紀(jì)榮藝、隋微波、曹仁義、張廣清等與會(huì)青年教師暢談了自己走上教育崗位后的工作經(jīng)歷和成長(zhǎng)感悟,以及工作、生活中的困惑和需求,并為學(xué)校青年教師隊(duì)伍的發(fā)展提出了建設(shè)性的意見(jiàn)。會(huì)議選舉林伯韜為青年教師協(xié)會(huì)會(huì)長(zhǎng)。
張來(lái)斌作了總結(jié)講話,希望青年教師協(xié)會(huì)從學(xué)校國(guó)際化發(fā)展的戰(zhàn)略布局出發(fā),為學(xué)院青年教師搭建思想交流和科研探討的平臺(tái),促進(jìn)青年教師在科學(xué)研究、學(xué)生培養(yǎng)和國(guó)際交流等方面不斷進(jìn)步。他鼓勵(lì)青年教師爭(zhēng)取在國(guó)際學(xué)術(shù)界中承擔(dān)學(xué)術(shù)職務(wù),增強(qiáng)學(xué)科影響力。他希望,該協(xié)會(huì)能夠?qū)ν庑麄鲗W(xué)校針對(duì)青年教師的各項(xiàng)扶持優(yōu)惠政策,以及在加大青年教師培養(yǎng)工作力度和加強(qiáng)青年教師隊(duì)伍國(guó)際化建設(shè)方面取得的成果,從而吸引更多的優(yōu)秀青年學(xué)者加入到學(xué)校的發(fā)展事業(yè)中。
來(lái)源:中國(guó)石油大學(xué)新聞網(wǎng) 2013-06-27