專家信息:
梁巖,女,浙江大學農業與生物技術學院生物技術研究所研究員,國家“青年**計劃”學者。
教育及工作經歷:
1994.9 – 1998.7,東北農業大學植物保護專業,學士學位。
1998.9 – 2001.7,浙江大學植物病理學專業,碩士學位。
2002.1 – 2007.2,美國佛蒙特大學(University of Vermont)植物學專業,博士學位。
2007.2-2011.10,中科院遺傳與發育生物學研究所,助理研究員。
2011.12-2015.2,美國密蘇里大學植物學系,博士后研究。
主講課程:
本科生課程:《基礎植物病理學》
研究生課程:《科技論文寫作》
培養研究生情況:
1. 王敏 植物病理學
2. 孫勛 植物病理學
招聘情況:
浙江大學農業與生物技術學院梁巖課題組招聘博士后啟事
浙江大學農業與生物技術學院生物技術所梁巖課題組因科研工作需要,誠招博士后研究人員2名。課題組主要研究植物與微生物互作中幾丁質與脂質幾丁質寡糖的分子識別機制(參考文獻:Liang et al., 2013, Science, 341:1384-1387)。
1、招聘要求
國內重點院校具有博士學位的畢業生,或國外知名大學留學回國人員,具有遺傳學、生物化學、農學或細胞生物學等相關學科背景;具有較強的科研能力,能夠獨立完成相關研究課題。有較強的中英文寫作能力,能夠熟練閱讀英文專業文獻;工作勤奮,進取心和責任感強,具有良好的團隊合作精神;年齡要求在35歲以下。
2、研究方向
根瘤菌結瘤因子的識別機制;幾丁質介導的植物抗病的分子機制;非豆科植物與根瘤菌的互作。
3、崗位待遇:
按學校有關規定,另加課題組業績獎勵。
聯系人:梁巖
E-mail:yanliang@zju.edu.cn
聯系地址:浙江大學農業與生物技術學院生物技術所
郵編:310058
研究方向:
植物與微生物互作中幾丁質(chitooligosaccharides)與脂質幾丁質寡糖(lipochitooligosaccharides) 的分子識別機制。
植物與微生物在長期共進化過程中形成兩種截然不同的關系:有些微生物被植物識別為敵人,即病原菌,植物通過識別病原菌的保守結構以及分泌的效應因子,從而誘導天然免疫反應,進而限制病原菌的進一步擴展;相反,有些微生物被植物識別為朋友,即有益菌,植物關閉天然免疫反應,與微生物建立互利互惠的關系。因此植物與微生物關系的建立是由植物識別微生物信號分子決定的。本實驗室主要研究植物與微生物互作的識別機制,重點集中在植物區分病原菌和共生菌的分子機制,主要包括以下兩個項目:
1)植物識別病原菌和共生菌脂多糖的分子機理。脂多糖俗稱為內毒素,是革蘭氏陰性菌細胞壁的主要成分。在病原細菌中,脂多糖是重要的病原相關分子模式,可以激活動植物細胞的先天免疫反應。然而根瘤菌的脂多糖被認為是侵染豆科植物形成根瘤所必須的。因此我們將進一步深入研究脂多糖分子在誘導植物先天免疫和介導共生中的作用機理。
2)豆科植物識別結瘤因子的進化機制。豆科植物與根瘤菌共生可以將大氣中的氮轉變為氨,為植物提供直接利用的氮源,這對減少化肥用量和農業的可持續發展有著非常重要的意義。建立這種共生關系的關鍵是豆科植物識別根瘤菌分泌的結瘤因子。豆科植物識別結瘤因子的受體與非豆科植物識別幾丁質和叢枝菌因子的受體密切相關,它們都屬于LysM蛋白家族,但幾丁質作為真菌的信號分子誘導植物免疫反應,叢枝菌因子介導大部分植物與叢枝菌共生。鑒于幾丁質、叢枝菌因子和結瘤因子結構上的相似性和受體的同源性,因此我們對比研究植物對幾種信號分子的識別,最終從分子上闡明豆科植物結瘤因子受體的進化機制。
承擔科研項目情況:
資料更新中……
科研成果:
1. 發現非豆科植物可以識別結瘤因子,但識別的結果是抑制植物的抗病反應。在根瘤形成過程中,結瘤因子是由LYK蛋白家族識別的。對擬南芥中LYK家族突變體的篩選發現,lyk3突變體中結瘤因子不能抑制抗病。這一結果證明,擬南芥lyk3是介導結瘤因子抑制抗病的關鍵基因,暗示著非豆科植物中存在根瘤菌結瘤因子的受體。
2. 發現了擬南芥中識別幾丁質的受體模式與豆科植物識別根瘤菌結瘤因子模式非常相似,它們都通過LYK蛋白家族識別,這為研究根瘤菌結瘤因子受體的生化機制提供了依據。非豆科植物的固氮研究一步一步推進,其前景也越來越明朗。
3. 根瘤菌結瘤因子的分子骨架與存在于真菌細胞壁中的幾丁質寡聚體很相似,梁巖發現,作為共生的信號分子,識別幾丁質寡聚糖類分子的受體可能起源于同一個祖先,幾丁質的受體識別模式可能是介導根瘤菌共生信號分子受體識別模式的起源。因而,在非豆科植物中研究幾丁質的信號轉導,將對改造非豆科植物識別結瘤因子有很重要的現實意義。
代表性英文論文:
Publications (#Co-first author, *Corresponding author)
(52) DGK5β-derived phosphatidic acid regulates ROS production in plant immunity by stabilizing NADPH oxidase.
Qi, F.#, Li, J.#, Ai, Y., Shangguan, K., Li, P., Lin, F.*, and Liang, Y.* (2024) Cell Host & Microbe 32, 1-16 https://www.sciencedirect.com/science/article/pii/S1931312824000155
website_figures(1)_00.jpg
Press Release in Chinese:
https://mp.weixin.qq.com/s/3z7kdL3DY74habRqXYcESA
https://mp.weixin.qq.com/s/YyQxBOn88Vhi_rhwJgrsuQ
https://mp.weixin.qq.com/s/WBsZopTSw2LCAl64f4mgEw
(51) Reversible phosphorylation of a lectin-receptor-like kinase controls xylem immunity.
Wang, R.#, Li, C.#, Jia, Z., Su, Y., Ai, Y., Li, Q., Guo, X., Tao, Z., Lin, F.*, and Liang, Y.* (2023) Cell Host Microbe 31, 1953-1955.
https://doi.org/10.1016/j.chom.2023.10.017
website_figures_00.jpg
Spotlight in English:
Macho, A.P. (2023). Walking down the phosphorylation path to root immunity. Cell Host Microbe 31, 1953-1955. https://doi.org/10.1016/j.chom.2023.11.013
Press Release in Chinese:
https://mp.weixin.qq.com/s/WKh6wPD2Tjqy3Ikz4WzAKg
https://mp.weixin.qq.com/s/WfUVgIzEsuRecjmLPRt0xg
(50) Fuels for ROS signaling in plant immunity.
Wu, B., Qi, F., and Liang, Y.* (2023). Trends Plant Sci 13, S1360-1385.
https://doi.org/10.1016/j.tplants.2023.04.007
website_figures_01.jpg
Hot papers (0.1%):
Press Release in Chinese:
https://mp.weixin.qq.com/s/f34Txni9mIxqEYt26g7bPA
(49) Ascorbate peroxidase 1 allows monitoring of cytosolic accumulation of effector-triggered reactive oxygen species using a luminol-based assay.
Hong, X., Qi, F., Wang, R., Jia, Z., Lin, F., Yuan, M., Xin, X.F., and Liang, Y.* (2023). Plant Physiol 191, 1416-1434.
https://doi.org/10.1093/plphys/kiac551
website_figures_02.jpg
Spotlight in English:
Ugalde, J.M. (2023). The echo from outside: ASCORBATE PEROXIDASE 1 modulates cytosolic effector-triggered reactive oxygen species. Plant Physiol. https://doi.org/10.1093/plphys/kiad089
Press Release in Chinese:
https://mp.weixin.qq.com/s/KNKQOOMdrYrUVEUy06RDQw
(48) RALF22 promotes plant immunity and amplifies the Pep3 immune signal.
He, Y.H., Chen, S.Y., Chen, X.Y., Xu, Y.P., Liang, Y., and Cai, X.Z. (2023). J Integr Plant Biol 65, 2519-2534.
https://doi.org/10.1111/jipb.13566
Press Release in Chinese:
https://mp.weixin.qq.com/s/pQvkfmv40np9Zx5vPJVYCg
(47) Tomato LysM receptor kinase 4 mediates chitin-elicited fungal resistance in both leaves and fruit.
Ai, Y., Li, Q., Li, C., Wang, R., Sun, X., Chen, S., Cai, X.Z., Qi, X., and Liang, Y.* (2023). Hortic Res 10, uhad082.
https://doi.org/10.1093/hr/uhad082.
website_figures_03.jpg
Press Release in Chinese:
https://mp.weixin.qq.com/s/N4sG2YYvOmoTPBed779Pyg
https://mp.weixin.qq.com/s/mLu7s2zDI6W99dlXXy8lLA
(46) Overexpression of an antioxidant enzyme APX1 in cpr5 mutant restores its pleiotropic growth phenotype.
Qi, F., Li, J., Hong, X., Jia, Z., Wu, B., Lin, F., and Liang, Y.* (2023). Antioxidants (Basel) 12: 301.
https://doi.org/10.3390/antiox12020301
website_figures_04.jpg
(45) Research progress on the regulation of vascular lignification on defense against bacterial wilt of plants. (In Chinese with English abstract)
Li, C., Wang, R., and Liang, Y.* (2023). Journal of Zhejiang University (Agriculture and Life Sciences), 49(5): 633-643.
Press Release in Chinese:
https://mp.weixin.qq.com/s/ZJ14ksCDv7zDs5hjqZTyag
https://mp.weixin.qq.com/s/_paqgkuNCkbu29l9UgEZ0Q
(44) Endophytic fungus Falciphora oryzae enhances salt tolerance by modulating ion homeostasis and antioxidant defense systems in pepper.
Zou, Y., Zhang, L., Liu, R., He, L., Hu, Z., Liang, Y., Lin, F., Zhou, Y.* (2023) Physiologia Plantarum, 175:e14059.
https://doi.org/10.1111/ppl.14059
(43) The receptor-like cytosolic kinase RIPK activates NADP-malic enzyme 2 to generate NADPH for fueling the ROS production.
Wu, B., Li, P., Hong X., Xu C., Wang R., and Liang Y.* (2022). Mol Plant, 15:887-903.
https://doi.org/10.1016/j.molp.2022.03.003
website_figures1_06.jpg
Faculty Opinions Recommendation, 23 Mar 2022
Press Release in Chinese:
https://mp.weixin.qq.com/s/DI_raO9rc_2z1q-IrxqUMQ
(42) Warm temperature compromises JA-regulated basal resistance to enhance Magnaporthe oryzae infection in rice.
Qiu, J., Xie, J., Chen, Y., Shen, Z., Shi, H., Naqvi, N.I., Qian, Q., Liang, Y., and Kou, Y. (2022). Mol Plant 15, 723-739.
https://doi.org/10.1016/j.molp.2022.02.014
Press Release in Chinese:
https://mp.weixin.qq.com/s/7HP-22ADufOksDhpzQaB2w
(41) Tomato receptor-like cytosolic kinase RIPK confers broad-spectrum disease resistance without yield penalties.
Wang, R., Li, C., Li, Q., Ai, Y., Huang, Z., Sun, X., Zhou, J., Zhou, Y., and Liang, Y.* (2022). Hortic Res 9, uhac207.
https://doi.org/10.1093/hr/uhac207
website_figures1_07.jpg
Press Release in Chinese:
https://mp.weixin.qq.com/s/_20u5SQ-k5FoTLXXtBIqPg
(40) His-Ala-Phe-Lys peptide from Burkholderia arboris possesses antifungal activity.
Zhu, H., Xu, C., Chen, Y., and Liang, Y.* (2022). Front Microbiol 13, 1071530.
https://doi.org/10.3389/fmicb.2022.1071530
website_figures1_08.jpg
(39) Real-time monitoring of Ralstonia solanacearum infection progress in tomato and Arabidopsis using bioluminescence imaging technology.
Xu, C., Zhong, L., Huang, Z., Li, C., Lian, J., Zheng, X., and Liang, Y.* (2022). Plant Methods 18, 7.
https://doi.org/10.1186/s13007-022-00841-x.
website_figures1_09.jpg
(38) Maintaining Symbiotic Homeostasis: How do plants engage with beneficial microorganisms while at the same time restricting pathogens?
Thoms, D., Liang, Y., and Haney, C.H. (2021). Mol Plant Microbe Interact 34, 462-469.
https://doi.org/10.1094/MPMI-11-20-0318-FI
(37) The receptor-like cytoplasmic kinase RIPK regulates broad-spectrum ROS signaling in multiple layers of plant immune system.
Li, P., Zhao, L., Qi, F., Htwe, N., Li, Q., Zhang, D., Lin, F., Shang-Guan, K., and Liang, Y.* (2021). Mol Plant 14, 1652-1667.
https://doi.org/10.1016/j.molp.2021.06.010
website_figures1_10.jpg
Spotlight in English:
Liu, D., Luo, D., and He, P. (2021). ROS around RIPK. Mol Plant 14, 1607-1609. https://doi.org/10.1016/j.molp.2021.07.019.
Singh, P., Mishra, V., Tripathi, D.K., Corpas, F.J., and Singh, V.P. (2022). RIPK: a crucial ROS signaling component in plants. Trends Plant Sci 27, 214-216. https://doi.org/10.1016/j.tplants.2021.12.001.
Highly cited paper (1%):
Press Release in Chinese:
https://mp.weixin.qq.com/s/dnFom6nAYDKAh4_MLFrD_w
https://mp.weixin.qq.com/s/p0sqHz86mT2Wc3Yzvl1AMw
https://mp.weixin.qq.com/s/I63_RWHChStRjsYsrUk64w
(36) Improved functional expression of cytochrome P450s in saccharomyces cerevisiae through screening a cDNA library from Arabidopsis thaliana.
Jiang, L., Dong, C., Liu, T., Shi, Y., Wang, H., Tao, Z., Liang, Y., and Lian, J. (2021). Front Bioeng Biotechnol 9, 764851.
https://doi.org/10.3389/fbioe.2021.764851
(35) Construction and application of luminescent strain of Pectobacterium carotovorum harboring luxCDABE operon. (In Chinese with English abstract)
Zhong, L., Xu, C., Huang, Z., An, Q., and Liang, Y.* (2021). Journal of Zhejiang University (Agriculture and Life Sciences), 47(5): 566-576.
http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.02.221 http://www.zjujournals.com/agr/CN/Y2021/V47/I5/566
website_figures1_11.jpg
Press Release in Chinese
https://mp.weixin.qq.com/s/9UROFJ9TadesbOi0hc-9Ug
(34) Optimal temporal-spatial fluorescence techniques for phenotyping nitrogen status in oilseed rape.
Sun, D., Xu, H., Weng, H., Zhou, W., Liang, Y., Dong, X., He, Y., and Cen, H. (2020). J Exp Bot 71, 6429-6443.
https://doi.org/10.1093/jxb/eraa372
(33) Endophytic fungus Falciphora oryzae promotes lateral root growth by producing indole derivatives after sensing plant signals.
Sun, X., Wang, N., Li, P., Jiang, Z., Liu, X., Wang, M., Su, Z., Zhang, C., Lin, F., and Liang, Y.* (2020). Plant Cell Environ 43, 358-373.
https://doi.org/10.1111/pce.13667
website_figures1_12.jpg
(32) Design and application of a rotatory device for detecting transient Ca2+ signals in response to mechanical stimulation using an aequorin-based Ca2+ imaging system.
Peng, Y., Zheng, Y., Zhou, J., Shang-Guan, K., Wang, H., and Liang, Y.* (2020). Curr Protoc Plant Biol 5, e20116.
https://doi.org/10.1002/cppb.20116
website_figures1_13.jpg
Before 2020
(31) Antepenultimate residue at the C-terminus of NADPH oxidase RBOHD is critical for its function in the production of reactive oxygen species in Arabidopsis.
Li, Q.Y., Li, P., Myint Phyu Sin Htwe, N., Shangguan, K.K., and Liang, Y.* (2019). J Zhejiang Univ Sci B 20, 713-727.
https://doi.org/10.1631/jzus.B1900105
(30) Lipopolysaccharide perception and signaling in plant immunity. (In Chinese with English abstract)
Li, Q., Wang, M., Wu, B., and Liang Y.* (2019) Plant Physiol J 2019, 55 (4): 387–392
https://doi.org/10.13592/j.cnki.ppj.2019.0059
(29) Lipopolysaccharides trigger two successive bursts of reactive oxygen species at distinct cellular locations.
Shang-Guan, K., Wang, M., Htwe, N., Li, P., Li, Y., Qi, F., Zhang, D., Cao, M., Kim, C., Weng, H., Cen, H., Black, I.M., Azadi, P., Carlson, R.W., Stacey, G., Liang, Y.* (2018). Plant Physiol 176, 2543-2556.
https://doi.org/10.1104/pp.17.01637
(28) Tomato LysM receptor-like kinase SlLYK12 is involved in arbuscular mycorrhizal symbiosis.
Liao, D., Sun, X., Wang, N., Song, F., and Liang, Y.* (2018). Front Plant Sci 9, 1004.
https://doi.org/10.3389/fpls.2018.01004
(27) Arabidopsis E3 ubiquitin ligase PLANT U-BOX13 (PUB13) regulates chitin receptor LYSIN MOTIF RECEPTOR KINASE5 (LYK5) protein abundance.
Liao, D.#, Cao, Y.#, Sun, X., Espinoza, C., Nguyen, C.T., Liang, Y.*, and Stacey, G.* (2017). New Phytol 214, 1646-1656.
https://doi.org/10.1111/nph.14472
(26) Chitin receptor CERK1 links salt stress and chitin-triggered innate immunity in Arabidopsis.
Espinoza, C., Liang, Y., and Stacey, G. (2017). Plant J 89, 984-995.
https://doi.org/10.1111/tpj.13437
(25) Involvement of a putative bipartite transit peptide in targeting rice pheophorbide a oxygenase into chloroplasts for chlorophyll degradation during leaf senescence.
Xie, Q.#, Liang, Y.#, Zhang, J., Zheng, H., Dong, G., Qian, Q., and Zuo, J. (2016). J Genet Genomics 43, 145-154.
https://doi.org/10.1016/j.jgg.2015.09.012
(24) Neglecting legumes has compromised human health and sustainable food production.
Foyer, C.H., Lam, H.M., Nguyen, H.T., Siddique, K.H., Varshney, R.K., Colmer, T.D., Cowling, W., Bramley, H., Mori, T.A., Hodgson, J.M., Cooper, J.W., Miller, A.J., Kunert, K., Vorster, J., Cullis, C., Ozga, J.A., Wahlqvist, M.L., Liang, Y., Shou, H., Shi, K., Yu, J., Fodor, N., Kaiser, B.N., Wong, F.L., Valliyodan, B., Considine, M.J. (2016). Nat Plants 2, 16112.
https://doi.org/10.1038/nplants.2016.112
(23) Rice ferredoxin-dependent glutamate synthase regulates nitrogen-carbon metabolomes and is genetically differentiated between japonica and indica subspecies.
Yang, X., Nian, J., Xie, Q., Feng, J., Zhang, F., Jing, H., Zhang, J., Dong, G., Liang, Y., Peng, J., et al. (2016). Mol Plant 9, 1520-1534.
https://doi.org/10.1016/j.molp.2016.09.004
(22) Identification of homogentisate dioxygenase as a target for vitamin E biofortification in oilseeds.
Stacey, M.G., Cahoon, R.E., Nguyen, H.T., Cui, Y., Sato, S., Nguyen, C.T., Phoka, N., Clark, K.M., Liang, Y., Forrester, J., et al. (2016). Plant Physiol 172, 1506-1518.
https://doi.org/10.1104/pp.16.00941
(21) The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein.
Zhao, W., Guan, C., Feng, J., Liang, Y., Zhan, N., Zuo, J., and Ren, B. (2016). J Integr Plant Biol 58, 669-678.
https://doi.org/10.1111/jipb.12448
(20) Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of abscisic acid insensitive 5 protein in Arabidopsis.
Guan, C., Wang, X., Feng, J., Hong, S., Liang, Y., Ren, B., and Zuo, J. (2014). Plant Physiol 164, 1515-1526.
https://doi.org/10.1104/pp.113.234740
(19) Lipochitooligosaccharide recognition: an ancient story.
Liang, Y., Toth, K., Cao, Y., Tanaka, K., Espinoza, C., and Stacey, G. (2014). New Phytol 204, 289-296.
https://doi.org/10.1111/nph.12898
(18) The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1.
Cao, Y.#, Liang, Y.#, Tanaka, K., Nguyen, C.T., Jedrzejczak, R.P., Joachimiak, A., and Stacey, G. (2014). eLife 3, e03766
https://doi.org/10.7554/eLife.03766
(17) Extracellular ATP, a danger signal, is recognized by DORN1 in Arabidopsis.
Choi, J., Tanaka, K., Liang, Y., Cao, Y.R., Lee, S.Y., and Stacey, G. (2014). Biochemical Journal 463, 429-437.
https://doi.org/10.1042/Bj20140666
(16) Identification of a plant receptor for extracellular ATP.
Choi, J., Tanaka, K., Cao, Y.R., Qi, Y., Qiu, J., Liang, Y., Lee, S.Y., and Stacey, G. (2014). Science 343, 290-294.
https://doi.org/10.1126/science.343.6168.290
(15) Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response.
Liang, Y., Cao, Y., Tanaka, K., Thibivilliers, S., Wan, J., Choi, J., Kang, C., Qiu, J., and Stacey, G. (2013). Science 341, 1384-1387.
https://doi.org/10.1126/science.1242736
(14) miR172 regulates soybean nodulation.
Yan, Z., Hossain, M.S., Wang, J., Valdes-Lopez, O., Liang, Y., Libault, M., Qiu, L., and Stacey, G. (2013). Mol Plant Microbe Interact 26, 1371-1377.
https://doi.org/10.1094/MPMI-04-13-0111-R
(13) Role of LysM receptors in chitin-triggered plant innate immunity.
Tanaka, K., Nguyen, C.T., Liang, Y., Cao, Y., and Stacey, G. (2013). Plant Signal Behav 8, e22598.
https://doi.org/10.4161/psb.22598
(12) Arabidopsis transcription factor genes NF-YA1, 5, 6, and 9 play redundant roles in male gametogenesis, embryogenesis, and seed development.
Mu, J., Tan, H., Hong, S., Liang, Y., and Zuo, J. (2013). Mol Plant 6, 188-201.
https://doi.org/10.1093/mp/sss061
(11) Deletion of the initial 45 residues of ARR18 induces cytokinin response in Arabidopsis.
Liang, Y., Wang, X., Hong, S., Li, Y., and Zuo, J. (2012). J Genet Genomics 39, 37-46.
https://doi.org/10.1016/j.jgg.2011.12.004
(10) Programmed cell death may act as a surveillance mechanism to safeguard male gametophyte development in Arabidopsis.
Zhang, J., Teng, C., and Liang, Y.* (2011). Protein Cell 2, 837-844.
https://doi.org/10.1007/s13238-011-1102-6
(9) A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula.
Yendrek, C.R., Lee, Y.C., Morris, V., Liang, Y., Pislariu, C.I., Burkart, G., Meckfessel, M.H., Salehin, M., Kessler, H., Wessler, H., et al. (2010). Plant J 62, 100-112.
https://doi.org/10.1111/j.1365-313X.2010.04134.x
(8) Arabidopsis histidine kinase CKI1 acts upstream of histidine phosphotransfer proteins to regulate female gametophyte development and vegetative growth.
Deng, Y., Dong, H., Mu, J., Ren, B., Zheng, B., Ji, Z., Yang, W.C., Liang, Y., and Zuo, J. (2010). Plant Cell 22, 1232-1248.
https://doi.org/10.1105/tpc.108.065128
(7) The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death.
Chen, R.#, Sun, S.#, Wang, C.#, Li, Y.#, Liang, Y.#, An, F., Li, C., Dong, H., Yang, X., Zhang, J., and Zuo, J. (2009). Cell Res 19, 1377-1387.
https://doi.org/10.1038/cr.2009.117
(6) Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling.
Ren, B., Liang, Y., Deng, Y., Chen, Q., Zhang, J., Yang, X., and Zuo, J. (2009). Cell Res 19, 1178-1190.
https://doi.org/10.1038/cr.2009.88
(5) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis.
Mu, J., Tan, H., Zheng, Q., Fu, F., Liang, Y., Zhang, J., Yang, X., Wang, T., Chong, K., Wang, X.J., and Zuo, J. (2008). Plant Physiol 148, 1042-1054.
https://doi.org/10.1104/pp.108.126342
(4) Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula.
Ding, Y., Kalo, P., Yendrek, C., Sun, J., Liang, Y., Marsh, J.F., Harris, J.M., and Oldroyd, G.E. (2008). Plant Cell 20, 2681-2695.
https://doi.org/10.1105/tpc.108.061739
(3) Advances in Arabidopsis research in China from 2006 to 2007.
Liang, Y., Zuo, J.*, and Yang, W.* (2007). Chinese Science Bulletin 52, 1729-1733.
https://doi.org/10.1007/s11434-007-0274-1.
(2) Abscisic acid rescues the root meristem defects of the Medicago truncatula latd mutant.
Liang, Y., Mitchell, D.M., and Harris, J.M. (2007). Dev Biol 304, 297-307.
https://doi.org/10.1016/j.ydbio.2006.12.037.
(1) The LATD gene of Medicago truncatula is required for both nodule and root development.
Bright, L.J., Liang, Y., Mitchell, D.M., and Harris, J.M. (2005). Mol Plant Microbe Interact 18, 521-532.
https://doi.org/10.1094/MPMI-18-0521
榮譽獎勵:
1、2015年入選國家“青年**計劃”。
中國科技創新人物云平臺暨“互聯網+”科技創新人物開放共享平臺(簡稱:中國科技創新人物云平臺)免責聲明:
1、中國科技創新人物云平臺是:“互聯網+科技創新人物”的大型云平臺,平臺主要發揮互聯網在生產要素配置中的優化和集成作用,將互聯網與科技創新人物的創新成果深度融合于經濟社會各領域之中,提升實體經濟的創新力和生產力,形成更廣泛的以互聯網為基礎設施和實現工具的經濟發展新形態,實現融合創新,為大眾創業,萬眾創新提供智力支持,為產業智能化提供支撐,加快形成經濟發展新動能,促進國民經濟提質增效升級。
2、中國科技創新人物云平臺暨“互聯網+”科技創新人物開放共享平臺內容來源于互聯網,信息都是采用計算機手段與相關數據庫信息自動匹配提取數據生成,并不意味著贊同其觀點或證實其內容的真實性,如果發現信息存在錯誤或者偏差,歡迎隨時與我們聯系,以便進行更新完善。
3、如果您認為本詞條還有待完善,請編輯詞條。
4、如果發現中國科技創新人物云平臺提供的內容有誤或轉載稿涉及版權等問題,請及時向本站反饋,網站編輯部郵箱:kjcxac@126.com。
5、中國科技創新人物云平臺建設中盡最大努力保證數據的真實可靠,但由于一些信息難于確認不可避免產生錯誤。因此,平臺信息僅供參考,對于使用平臺信息而引起的任何爭議,平臺概不承擔任何責任。